In diploid wheat (Triticum monococcum), and likely in other Triticeae species, the VRN1 gene is essential for the initiation of the reproductive phase, and therefore, a detailed characterization of its regulatory regions is required to understand this process. A CArG-box (MADS-box-binding site) identified in the VRN1 promoter upstream from the transcription initiation site has been proposed as a critical regulatory element for the vernalization response. This hypothesis was supported by the genetic linkage between CArG-box natural deletions and dominant Vrn1 alleles for spring growth habit and by physical interactions with VRT2, a MADS-box protein proposed as a putative flowering repressor regulated by vernalization. Here, we describe a T. monococcum accession with a strong vernalization requirement and a 48-bp deletion encompassing the CArG-box in the VRN1 promoter. Genetic analyses of 2 segregating populations confirmed that this VRN1 allele is completely linked with a strong winter growth habit (vrn-A(m)1b). Transcript levels of the VRN1 allele with the 48-bp deletion were very low in unvernalized plants and increased during vernalization to levels similar to those detected in other wild-type vrn-A(m)1 alleles. Taken together, these results indicate that the CArG-box found upstream of the VRN1 transcription initiation site is not essential for the vernalization response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jhered/esp002 | DOI Listing |
Sci Rep
January 2025
Department of Genetics, Plant Breeding and Seed Production, Wrocław University of Environmental and Life Sciences, Plac Grunwaldzki 24A, 50-363, Wrocław, Poland.
White lupin (Lupinus albus L.) is an ancient grain legume that is still undergoing improvement of domestication traits, including vernalization-responsiveness, providing frost tolerance and preventing winter flowering in autumn-sowing agriculture, and vernalization-independence, conferring drought escape by rapid flowering in spring-sowing. A recent genome-wide association study highlighted several loci significantly associated with the most contrasting phenotypes, including deletions in the promoter of the FLOWERING LOCUS T homolog, LalbFTc1, and some DArT-seq/silicoDArT loci.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Mathematical Biology and Bioinformatics Laboratory, Peter the Great Saint Petersburg Polytechnic University, 195251 St. Petersburg, Russia.
Flowering is initiated in response to environmental cues, with the photoperiod and ambient temperature being the main ones. The regulatory pathways underlying floral transition are well studied in but remain largely unknown in legumes. Here, we first applied an in silico approach to infer the regulatory inputs of four -like genes of the narrow-leafed lupin .
View Article and Find Full Text PDFNew Phytol
December 2024
Department of Plant Biology, University of Vermont, 63 Carrigan Drive, Burlington, VT, 05405, USA.
Grasses are fundamental to human survival, providing a large percentage of our calories, fuel, and fodder for livestock, and an enormous global carbon sink. A particularly important part of the grass plant is the grain-producing inflorescence that develops in response to both internal and external signals that converge at the shoot tip to influence meristem behavior. Abiotic signals that trigger reproductive development vary across the grass family, mostly due to the unique ecological and phylogenetic histories of each clade.
View Article and Find Full Text PDFEvol Lett
December 2024
Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
The Urban Heat Island Effect (UHIE) is a globally consistent pressure on biological species living in cities. Adaptation to the UHIE may be necessary for urban wild flora to persist in cities, but experimental evidence is scarce. Here, we report evidence of adaptive evolution in a perennial plant species in response to the UHIE.
View Article and Find Full Text PDFGenome Biol
December 2024
National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
Background: Plants respond to environmental stimuli by altering gene transcription that is highly related with chromatin status, including histone modification, chromatin accessibility, and three-dimensional chromatin interaction. Vernalization is essential for the transition to reproductive growth for winter wheat. How wheat reshapes its chromatin features, especially chromatin interaction during vernalization, remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!