Myocardial protection by nitrite.

Cardiovasc Res

Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine, Carlyle Fraser Heart Center Crawford Long Hospital, 6th Floor Medical Office Tower, 550 Peachtree Street NE, Atlanta, GA 30308-2247, USA.

Published: July 2009

Nitrite has long been considered to be an inert oxidative metabolite of nitric oxide (NO). Recent work, however, has demonstrated that nitrite represents an important tissue storage form of NO that can be reduced to NO during ischaemic or hypoxic events. This exciting series of discoveries has created an entirely new field of research that involves the investigation of the molecular, biochemical, and physiological activities of nitrite under a variety of physiological and pathophysiological states. This has also led to a re-evaluation of the role that nitrite plays in health and disease. As a result there has been an interest in the use of nitrite as a therapeutic strategy for the treatment of acute myocardial infarction. Nitrite therapy has now been studied in several animal models and has proven to be an effective means to reduce myocardial ischaemia-reperfusion injury. This review article will provide a brief summary of the key findings that have led to the re-evaluation of nitrite and highlight the evidence supporting the cardioprotective actions of nitrite and also highlight the potential clinical application of nitrite therapy to cardiovascular diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2701719PMC
http://dx.doi.org/10.1093/cvr/cvp079DOI Listing

Publication Analysis

Top Keywords

nitrite
10
led re-evaluation
8
nitrite therapy
8
nitrite highlight
8
myocardial protection
4
protection nitrite
4
nitrite nitrite
4
nitrite long
4
long considered
4
considered inert
4

Similar Publications

Bees are essential pollinators that contribute to maintaining biodiversity and increasing agricultural production. However, by foraging on agricultural crops, bees may become contaminated with compounds used for pest control. In this study, we exposed bee (Apis mellifera L.

View Article and Find Full Text PDF

This study investigated the anti-cancer effects of the chemically characterized Tilia species (linden) on MIA PaCa-2 cells by analyzing various cancer-triggering mechanisms, including oxidative stress and inflammation status. Extracts from the flowers, bracts, and inflorescences of T. cordata, T.

View Article and Find Full Text PDF

The g-C3N4/CS biosensor was designed, fabricated, and tested using compounds such as glucose, urine, lactose, and flutamide at a molarity of 10 µM, which could demonstrate a high sensitivity of 200 μm-1 for flutamide. Powerful effective medium theory and FDTD simulation were used to predict the most favorable mode and plasmonic properties of a graphite carbon nitride and chitosan nanocomposite. The research also explores the characteristics of surface plasmon resonance exhibited by the nanocomposite as the chitosan content is adjusted.

View Article and Find Full Text PDF

Background: Monitoring nitrate and nitrite levels in water is vital for protecting human health, aquatic ecosystems, and regulatory compliance. However, traditional detection methods often involve environmentally harmful chemicals. This study introduces a sustainable alternative by leveraging metabolically engineered E.

View Article and Find Full Text PDF

The presence of PbO in the flue gas can poison FeCe catalyst, reducing its denitrification efficiency. In this work, the mechanism of PbO poisoning of FeCe catalyst, along with the effects of W and Co co-doping on the NO oxidation performance and PbO resistance of FeCe catalyst were investigated. The S of FeCe catalyst decreased and the crystallinity increased obviously after PbO poisoning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!