Multimodality imaging based on complementary detection principles has broad clinical applications and promises to improve the accuracy of medical diagnosis. This means that a tracer particle advantageously incorporates multiple functionalities into a single delivery vehicle. In the present work, we explore a unique combination of MRI and photoacoustic tomography (PAT) to detect picomolar concentrations of nanoparticles. The nanoconstruct consists of ferromagnetic (Co) particles coated with gold (Au) for biocompatibility and a unique shape that enables optical absorption over a broad range of frequencies. The end result is a dual-modality probe useful for the detection of trace amounts of nanoparticles in biological tissues, in which MRI provides volume detection, whereas PAT performs edge detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2657430 | PMC |
http://dx.doi.org/10.1073/pnas.0813019106 | DOI Listing |
J Colloid Interface Sci
December 2024
School of Basic Medicine, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan 750004, China. Electronic address:
Targeting the peculiarities of tumor tissue microenvironment different from normal tissue, such as lower pH and overexpression of hydrogen peroxide is the key to effective treatment. In this study, acid-responsive Z-scheme heterojunctions polyglycolated MoS/CoFeO (MoS = molybdenum disulfide, CoFeO = cobalt ferrite) was synthesized using a two-step hydrothermal method, designated as MSCO-PEG, guided by dual modes of photoacoustic imagine (PAI) and nuclear magnetic imaging (MRI). MSCO-PEG (PEG = polyethylene glycol) responded to the acidic environment of tumor tissues and overexpression of hydrogen peroxide to turn on multimodal synergistic treatment of tumor cells under near-infrared-II (NIR-II) illumination.
View Article and Find Full Text PDFIn Vivo
December 2024
School of Physics, Mathematics and Computing, The University of Western Australia, Perth, Australia.
Background/aim: Tumors exhibit impaired blood flow and hypoxic areas, which can reduce the effectiveness of treatments. Characterizing these tumor features can inform treatment decisions, including the use of vasculature modulation therapies. Imaging provides insight into these characteristics, with techniques varying between clinical and preclinical settings.
View Article and Find Full Text PDFNat Commun
December 2024
Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
Resting-state functional connectivity (rsFC) has been essential to elucidate the intricacy of brain organization, further revealing clinical biomarkers of neurological disorders. Although functional magnetic resonance imaging (fMRI) remains a cornerstone in the field of rsFC recordings, its interpretation is often hindered by the convoluted physiological origin of the blood-oxygen-level-dependent (BOLD) contrast affected by multiple factors. Here, we capitalize on the unique concurrent multiparametric hemodynamic recordings of a hybrid magnetic resonance optoacoustic tomography platform to comprehensively characterize rsFC in female mice.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
December 2024
Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA.
The detection and assessment of atherosclerosis and cardiovascular calcification can inform risk stratification and therapies to reduce cardiovascular morbidity and mortality. In this review, we provide an overview of current and emerging imaging techniques for assessing atherosclerosis and cardiovascular calcification in animal models. Traditional imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), offer non-invasive approaches of visualizing atherosclerotic calcification in vivo; integration of these techniques with positron emission tomography (PET) imaging adds molecular imaging capabilities, such as detection of metabolically active microcalcifications with F-sodium fluoride.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
Reactive oxygen species (ROS) are generated predominantly during cellular respiration and play a significant role in signaling within the cell and between cells. However, excessive accumulation of ROS can lead to cellular dysfunction, disease progression, and apoptosis that can lead to organ dysfunction. To overcome the short half-life of ROS and the relatively small amount produced, various imaging methods have been developed, using both endogenous and exogenous means to monitor ROS in disease settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!