Integration of nanosized zero-valent iron particles addition with UV/H2O2 process for purification of azo dye Acid Black 24 solution.

J Hazard Mater

Department of Environmental Engineering, Hungkuang University, No. 34 Chung-Chie Rd., Shalu, Taichung County 433, Taiwan, ROC.

Published: August 2009

The challenging national effluent standards for color and organic concentration enforce the industrial concern most the techniques providing fast and efficient solution for the strenuous dye wastewater treatment before outflow. The best remediation technique pursuit is urgently demand for the industrial, government, academia and community. In this study, a di-azo dye, C.I. Acid Black 24, synthesized wastewater was successfully removed synchronously its total color and total organic carbon (TOC) using an integrated innovation technology by coupling the zero-valent iron (ZVI) nanoparticles with UV/H(2)O(2) oxidation process. The nanosized ZVI (NZVI) primarily reduced color successfully following coupling UV/H(2)O(2) oxidation process for the residual organic mineralization resulting reduction with oxidation process (Re-Ox) for total color removal and organic mineralization. From the experimental data, the Re-Ox process consumed shorter time than UV/H(2)O(2) oxidation process alone to obtain total color removal of dye wastewater. Moreover, the residual TOC of dye wastewater after NZVI reduction from 45 to 100% was effectively mineralized by UV/H(2)O(2) process. By using proposed processes integration with NZVI dosage of 0.3348 g l(-1) and hydrogen peroxide concentration of 23.2 mM, in only 10 min the AB24 color was complete eliminated and in 90 min the TOC was 93.9% removed. Thus, the coupling Re-Ox process was developed to provide a superior solution for dye wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2009.01.106DOI Listing

Publication Analysis

Top Keywords

dye wastewater
16
oxidation process
16
total color
12
uv/h2o2 oxidation
12
zero-valent iron
8
process
8
uv/h2o2 process
8
dye acid
8
acid black
8
wastewater treatment
8

Similar Publications

Inhibitory effects of cadmium and hydrophilic cadmium telluride quantum dots on the white rot fungus .

Heliyon

January 2025

Department of Microbiology (Biocenter 1, Viikinkaari 9), Faculty of Agriculture and Forestry, University of Helsinki, Finland.

The white rot fungus was investigated for its ability to decolorize the reactive textile dye Reactive Black 5 (RB5) that was co-exposed to CdCl and quantum dots (QDs) consisting of a CdTe core capped with two different hydrophilic organic ligands (NAC and MPA). Without co-exposure, completely decolorizes RB5 within 9 days. The highest inhibitory effect was found for soluble CdCl with an EC of 583 μg l, followed by MPA-QDs (10,628 μg l) and NAC-QDs (17,575 μg l).

View Article and Find Full Text PDF

This report investigates the preparation, characterization, and application of activated carbon derived from Spathodea campanulata flowers (SCAC) to remove Congo Red (CR) dye from aqueous streams. SCAC was synthesized using orthophosphoric acid activation which yielded a mesoporous material with a specific surface area of (986.41 m/g), significantly exceeding values reported for flower-derived activated carbons in the available literature.

View Article and Find Full Text PDF

The spent black tea extract was utilized in order to synthesize the spent black tea silver nanoparticles (SBT-AgNPs). Various parameters were tested to yield the best production of SBT-AgNPs. The characterization was conducted by X-Ray diffraction, Scanning electron microscopy, Zeta potential and energy dispersive X-ray (EDX).

View Article and Find Full Text PDF

A set of nCN/WO composites was synthesized through a simple thermal treatment for gold recovery from the simulated effluent of a non-cyanide-based plating bath. The obtained results exhibited that all nCN/WO composites demonstrated a higher photocatalytic activity for gold recovery than their pristine components due to the formation of nanocomposites which paved a convenient pathway for charge transfer. Among all synthesized composites, the 5.

View Article and Find Full Text PDF

This research focuses on the development of a novel Ru-doped TiO/grapefruit peel biochar/FeO (Ru-TiO/PC/FeO) composite catalyst, which exhibits exceptional photocatalytic efficacy under simulated solar light irradiation. The catalyst is highly effective in the degradation of rhodamine B (RhB), methylene blue (MB), methyl orange (MO), as well as actual industrial dye wastewater (IDW), and can be recovered magnetically for multiple reuse cycles. Significantly, the PCTRF-100 sample exhibited degradation efficiencies of 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!