Cbln1 (a.k.a. precerebellin) is secreted from cerebellar granule cells as homohexamer or in heteromeric complexes with Cbln3. Cbln1 plays crucial roles in regulating morphological integrity of parallel fiber (PF)-Purkinje cell (PC) synapses and synaptic plasticity. Cbln1-knockout mice display severe cerebellar phenotypes that are essentially indistinguishable from those in glutamate receptor GluRdelta2-null mice, and include severe reduction in the number of PF-PC synapses and loss of long-term depression of synaptic transmission. To understand better the relationship between Cbln1, Cbln3 and GluRdelta2, we performed light and electron microscopic immunohistochemical analyses using highly specific antibodies and antigen-exposing methods, i.e. pepsin pretreatment for light microscopy and postembedding immunogold for electron microscopy. In conventional immunohistochemistry, Cbln1 was preferentially associated with non-terminal portions of PF axons in the molecular layer but rarely overlapped with Cbln3. In contrast, antigen-exposing methods not only greatly intensified Cbln1 immunoreactivity in the molecular layer, but also revealed its high accumulation in the synaptic cleft of PF-PC synapses. No such synaptic accumulation was evident at other PC synapses. Furthermore, Cbln1 now came to overlap almost completely with Cbln3 and GluRdelta2 at PF-PC synapses. Therefore, the convergence of all three molecules provides the anatomical basis for a common signaling pathway regulating circuit development and synaptic plasticity in the cerebellum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682213 | PMC |
http://dx.doi.org/10.1111/j.1460-9568.2009.06632.x | DOI Listing |
Eur J Neurosci
February 2009
Department of Anatomy, Hokkaido University School of Medicine, Sapporo, Japan.
Cbln1 (a.k.a.
View Article and Find Full Text PDFMol Cell Biol
December 2006
Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA.
Cbln1 and the orphan glutamate receptor GluRdelta2 are pre- and postsynaptic components, respectively, of a novel transneuronal signaling pathway regulating synapse structure and function. We show here that Cbln1 is secreted from cerebellar granule cells in complex with a related protein, Cbln3. However, cbln1- and cbln3-null mice have different phenotypes and cbln1 cbln3 double-null mice have deficits identical to those of cbln1 knockout mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!