Aim: The aim of the present study was to assess the influence of the chemical characteristics and roughness of titanium surfaces on the viability, proliferation and differentiation of osteoblast-like cells cultured in a medium supplemented with recombinant human bone morphogenetic protein-7 (rhBMP-7).

Material And Methods: Osteo-1 cells were grown on titanium disks presenting with the following surfaces: (1) machined, (2) coarse grit-blasted and acid-attacked (SLA) and (3) chemically modified SLA (SLAmod) in the absence or presence of 20 ng/ml rhBMP-7 in culture medium. The viability and number of osteo-1 cells were evaluated after 24 h. Analyses of total protein content (TP) and alkaline phosphatase (AP) activity at 7, 14 and 21 days, collagen content at 7 and 21 days and mineralized matrix formation at 21 days were performed.

Results: Cell viability (P=0.5516), cell number (P=0.3485), collagen content (P=0.1165) and mineralized matrix formation (P=0.5319) were not affected by the different surface configurations or by the addition of rhBMP-7 to the medium. Osteo-1 cells cultured on SLA surfaces showed a significant increase in TP at 21 days. The ALPase/TP ratio (P=0.00001) was affected by treatment and time.

Conclusion: The results suggest that the addition of rhBMP-7 to the culture medium did not exert any effect on the viability, proliferation or differentiation of osteoblast-like cells grown on the different surfaces tested. All titanium surfaces analyzed allowed the complete expression of the osteoblast phenotype such as matrix mineralization by osteo-1 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0501.2008.01669.xDOI Listing

Publication Analysis

Top Keywords

osteo-1 cells
16
viability proliferation
12
proliferation differentiation
12
differentiation osteoblast-like
12
osteoblast-like cells
12
cells cultured
12
recombinant human
8
human bone
8
bone morphogenetic
8
morphogenetic protein-7
8

Similar Publications

Objective: The aims of this study were: 1) to evaluate the effect of sintering temperature on microstructure, density and flexural strength of a 3Y-TZP/TiO composite containing 12.5 wt% of TiO compared to 3Y-TZP specimens (control); 2) to compare 3Y-TZP with the experimental 3Y-TZP/TiO composite, both sintered at 1400 °C, with respect to the following parameters: optical properties, characteristic strength, Weibull modulus, fatigue behavior, induction of osteoblasts proliferation and differentiation (mineralization nodules formation).

Methods: The 3Y-TZP and 3Y-TZP/TiO powders were uniaxially pressed and sintered at 1200 °C, 1300 °C, 1400 °C or 1500 °C for one hour in a furnace.

View Article and Find Full Text PDF

In this study, we present a review of the literature on the impact of photobiomodulation on osteoblast-like cell culture. Searches were performed in the PubMed/MEDLINE (Medical Literature Analysis and Retrieval System Online), SCOPUS, and SPIE digital library databases for original articles regarding the effects of LLLT on osteoblast-like cells in experimental models using LLLT published in English from the last 20 years. The search identified 1439 studies.

View Article and Find Full Text PDF

Background: The constant development of new root canal sealers has allowed the solution of a large number of clinical cases in endodontics, however, cytotoxicity of such sealers must be tested before their validation as filling materials. The aim of this study was to evaluate the cytotoxic effect of a new Copaiba oil-based root canal sealer (Biosealer [BS]) on osteoblast-like Osteo-1 cells.

Materials And Methods: The experimental groups were formed according to the culture medium conditioned with the tested sealers, as follows: Control group (CG) (culture medium without conditioning); Sealer 26 (S26) - culture medium + S26; Endofill (EF) - culture medium + EF; AH Plus (AHP) - culture medium + AHP; and BS - culture medium + BS (Copaiba oil-based sealer).

View Article and Find Full Text PDF

This study analyzed the role of recombinant human bone morphogenetic protein 2 (rhBMP-2) and recombinant human bone morphogenetic protein 7 (rhBMP-7) in the adhesion and differentiation of rat osteoblast-like (osteo-1) cells cultured on chemically modified titanium surfaces. Osteo-1 cells were cultured on chemically modified (modified sandblasted and acid-etched) titanium surfaces in 3 different types of medium: control, medium supplemented with 20 ng/mL rhBMP-2, and medium supplemented with 20 ng/mL rhBMP-7. The following parameters were evaluated: cell adhesion after 24 hours; total protein content; collagen content and alkaline phosphatase (AP) activity after 7, 14, and 21 days; and calcified nodule formation after 21 days.

View Article and Find Full Text PDF

At present the major consideration in planning an implant design is to seek biocompatible surfaces that promote a favorable response from both cells and host tissues. Different treatments of implant surfaces may modulate the adhesion, proliferation and phenotypic expression of osteoblastic cells. For this reason, the aim of the present study was to evaluate the biocompatibility of an implant surface, observing adhesion, cell morphology and proliferation of osteoblast-like cells cultivated on a commercially available titanium dental implant (Titamax Liso, Neodent, Curitiba, PR, Brazil).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!