Who is monitoring your infections: shouldn't you be?

Surg Infect (Larchmt)

Department of Surgery, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44109-1998, USA.

Published: February 2009

Background: In the era of pay for performance and outcome comparisons among institutions, it is imperative to have reliable and accurate surveillance methodology for monitoring infectious complications. The current monitoring standard often involves a combination of prospective and retrospective analysis by trained infection control (IC) teams. We have developed a medical informatics application, the Surgical Intensive Care-Infection Registry (SIC-IR), to assist with infection surveillance. The objectives of this study were to: (1) Evaluate for differences in data gathered between the current IC practices and SIC-IR; and (2) determine which method has the best sensitivity and specificity for identifying ventilator-associated pneumonia (VAP).

Methods: A prospective analysis was conducted in two surgical and trauma intensive care units (STICU) at a level I trauma center (Unit 1: 8 months, Unit 2: 4 months). Data were collected simultaneously by the SIC-IR system at the point of patient care and by IC utilizing multiple administrative and clinical modalities. Data collected by both systems included patient days, ventilator days, central line days, number of VAPs, and number of catheter-related blood steam infections (CR-BSIs). Both VAPs and CR-BSIs were classified using the definitions of the U.S. Centers for Disease Control and Prevention. The VAPs were analyzed individually, and true infections were defined by a physician panel blinded to methodology of surveillance. Using these true infections as a reference standard, sensitivity and specificity for both SIC-IR and IC were determined.

Results: A total of 769 patients were evaluated by both surveillance systems. There were statistical differences between the median number of patient days/month and ventilator-days/month when IC was compared with SIC-IR. There was no difference in the rates of CR-BSI/1,000 central line days per month. However, VAP rates were significantly different for the two surveillance methodologies (SIC-IR: 14.8/1,000 ventilator days, IC: 8.4/1,000 ventilator days; p = 0.008). The physician panel identified 40 patients (5%) who had 43 VAPs. The SIC-IR identified 39 and IC documented 22 of the 40 patients with VAP. The SIC-IR had a sensitivity and specificity of 97% and 100%, respectively, for identifying VAP and for IC, a sensitivity of 56% and a specificity of 99%.

Conclusions: Utilizing SIC-IR at the point of patient care by a multidisciplinary STICU team offers more accurate infection surveillance with high sensitivity and specificity. This monitoring can be accomplished without additional resources and engages the physicians treating the patient.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2963596PMC
http://dx.doi.org/10.1089/sur.2008.056DOI Listing

Publication Analysis

Top Keywords

sensitivity specificity
16
ventilator days
12
sic-ir
9
infection surveillance
8
unit months
8
data collected
8
point patient
8
patient care
8
central days
8
true infections
8

Similar Publications

Background: B7-H3 or CD276 is notably overexpressed in various malignant tumor cells in humans, with extremely high expression rates. The development of a radiotracer that targets B7-H3 may provide a universal tumor-specific imaging agent and allow the noninvasive assessment of the whole-body distribution of B7-H3-expressing lesions.

Methods: We enhanced and optimized the structure of an affibody (ABY) that targets B7-H3 to create the radiolabeled radiotracer [68Ga]Ga-B7H3-BCH, and then, we conducted both foundational experiments and clinical translational studies.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop and validate a deep-learning model for noninvasive anemia detection, hemoglobin (Hb) level estimation, and identification of anemia-related retinal features using fundus images.

Methods: The dataset included 2265 participants aged 40 years and above from a population-based study in South India. The dataset included ocular and systemic clinical parameters, dilated retinal fundus images, and hematological data such as complete blood counts and Hb concentration levels.

View Article and Find Full Text PDF

Importance: Given the favorable overall prognosis of human papillomavirus (HPV)-related oropharyngeal squamous cell carcinoma (OPSCC) and the morbidity of increased adjuvant therapy associated with positive surgical margins, large-scale studies on the accuracy of frozen sections in predicting final surgical margin status in HPV-related OPSCC are imperative. Final surgical margin status is the definitive assessment of tumor clearance as determined through surgeon-pathologist collaboration based on permanent analysis of frozen section margins, main specimens, and supplemental resections.

Objectives: To assess the accuracy and testing properties of intraoperative frozen section histology (IFSH) in assessing final surgical margin status in patients undergoing transoral surgery for HPV-related OPSCC.

View Article and Find Full Text PDF

Background: Differential DNA methylation in the promoter region of tumour suppressor genes leads to gene function silencing.

Materials And Methods: In this study, we aimed to evaluate the salivary promoter methylation of EDNRB, MGMT and TIMP3 genes in H&NC patients (n = 100), premalignant lesions patients (n = 25) and healthy controls (n = 50). Blood and saliva samples were collected from all three groups and 20 concomitant tumour tissues were collected from the H&NC patients.

View Article and Find Full Text PDF

Rapid and sensitive detection of Epstein-Barr virus cell-free DNA (EBV cfDNA) is crucial for early diagnosis and monitoring of nasopharyngeal carcinoma (NPC), but accessibility to screening is limited by complicated and costly conventional DNA isolation and purification approaches. Here, a fully integrated ion concentration polarization (ICP)-enriched and nanozyme-catalyzed lateral flow assay (ICP-cLFA) is developed, enabling total analysis of EBV cfDNA in whole blood samples, with DNA isolation, pre-concentration, and amplification performed on a microfluidic chip, consequently providing the signal readout within 75 min. Specifically, ICP preconcentration and amplification steps, together with target recognition catalyzed by a platinum-decorated mesoporous gold nanosphere (MGNS@Pt) nanozyme, result in an ultralow detection limit of 4 aM in standard cfDNA samples and 100 aM in whole blood from NPC-bearing rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!