Loss of the acinar-restricted transcription factor Mist1 accelerates Kras-induced pancreatic intraepithelial neoplasia.

Gastroenterology

Department of Biological Sciences and the Purdue Cancer Center, Purdue University, West Lafayette, Indiana 47907-2064, USA.

Published: April 2009

Background & Aims: Invasive pancreatic ductal adenocarcinoma is thought to originate from duct-like lesions called pancreatic intraepithelial neoplasia (PanIN). PanINs progress from low grade (PanIN-1) to high grade (PanIN-3) as the cells attain molecular alterations to key regulatory genes, including activating mutations in the KRAS protooncogene. Despite a well-documented progression model, our knowledge of the initiator cells of PanINs and the transcriptional networks and signaling pathways that impact PanIN formation remains incomplete.

Methods: In this study, we examined the importance of the acinar-restricted transcription factor Mist1 to KrasG12D-induced mouse PanIN (mPanIN) formation in 3 different mouse models of pancreatic cancer.

Results: In the absence of Mist1 (Mist1KO), KrasG12D-expressing mice exhibited severe exocrine pancreatic defects that were rescued by ectopic expression of Mist1 in acinar cells. mPanIN development was greatly accelerated in Mist1KO/KrasG12D/+ pancreata, and in vitro assays revealed that Mist1KO acinar cells were predisposed to convert to a ductal phenotype and activate epidermal growth factor receptor (EGFR) and Notch-signaling pathways.

Conclusions: We propose that convergence of EGFR, Notch, and Kras pathways in acinar cells lacking Mist1 leads to enhanced mPanIN formation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845927PMC
http://dx.doi.org/10.1053/j.gastro.2008.12.066DOI Listing

Publication Analysis

Top Keywords

acinar cells
12
acinar-restricted transcription
8
transcription factor
8
factor mist1
8
pancreatic intraepithelial
8
intraepithelial neoplasia
8
mpanin formation
8
mist1
5
pancreatic
5
cells
5

Similar Publications

Elucidating the mechanism of stigmasterol in acute pancreatitis treatment: insights from network pharmacology and / experiments.

Front Pharmacol

December 2024

West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China.

Introduction: Acute pancreatitis (AP) is a severe inflammatory disease of the pancreas that could trigger a systemic inflammation and multi-organ dysfunction. Stigmasterol, a natural plant sterol found in various herbs and vegetables, exhibits a significant anti-inflammatory, antioxidant, and cholesterol-lowering effects. However, its therapeutic potential in AP have not been thoroughly investigated.

View Article and Find Full Text PDF

Pancreatic cancer is a highly lethal malignancy with few effective treatment options. Connexin 31 (Cx31) is a membrane protein capable of forming hexameric channels to facilitate the exchange of metabolites and signaling molecules. Yet, the contribution of Cx31 to the onset and progression of pancreatic cancer remains to be understood.

View Article and Find Full Text PDF

To develop an atrophic Meibomian Gland Dysfunction (MGD) animal model via liquid nitrogen cryotherapy, the eyelid edges of C57 mice exposure to liquid nitrogen for 30 s. Morphology of MG and ocular surface were assessed using stereomicroscopy and a slit lamp microscope at multiple time points post-injury. Acinar loss and atrophy were observed from day 7, with increased inflammation and apoptosis, and decreased proliferation in acinar cells.

View Article and Find Full Text PDF

Systemic administration of Janus kinase (JAK) inhibitors is effective in treating chronic graft-versus-host disease (cGVHD) but is associated with side effects. Topical drug administration effectively minimizes side effects. We aimed to investigate potential trends of the efficacy of topical delgocitinib administration in a mouse model.

View Article and Find Full Text PDF

Enhancer of Zeste Homologue 2 (EZH2) is part of the Polycomb Repressor Complex 2, which promotes trimethylation of lysine 27 on histone 3 (H3K27me3) and genes repression. EZH2 is overexpressed in many cancers and studies in mice attributed both pro-oncogenic and tumor suppressive functions to EZH2 in pancreatic ductal adenocarcinoma (PDAC). EZH2 deletion enhances de novo KRAS-driven neoplasia following pancreatic injury, while increased EZH2 expression in PDAC patients is correlated to poor prognosis, suggesting a context-dependant effect for EZH2 in PDAC progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!