NH4+ secretion in the avian colon. An actively regulated barrier to ammonium permeation of the colon mucosa.

Comp Biochem Physiol A Mol Integr Physiol

Department of Medicine CA, Section of Gastroenterology, Rigshospitalet, Copenhagen, Denmark.

Published: July 2009

Experiments were designed to characterize an active, electrogenic transport of NH(4)(+) ions across the colonic epithelium of the domestic fowl (Gallus gallus). Colonic segments were isolated and stripped of underlying muscle. The mucosal epithelia were mounted in Ussing chambers and voltage-clamped to measure the short-circuit currents (I(SC)) associated with transport. Bilateral addition of NH(4)(+) caused a dose-dependent outward current (negative I(SC)), with a Km of 34+/-8 mM and a maximal current response of 311+/-47 microA cm(-2) (12+/-2 microEq cm(-2) h(-1)). A similar effect was seen with unilateral addition of NH(4)(+) to the serosal (s) side, but not with mucosal (m) addition. Pre-treatment with 10(-4) M amiloride exposed a net outward (negative) I(SC), and serosal NH(4)(+) addition further increased this outward current with a Km of 53+/-24 mM. Decreasing the bath pH from 7.3 to 6.0 did not affect the I(SC) response to NH(4)(+). Unidirectional NH(4)(+) flux measurements revealed a net secretory flux (8.8+/-3.1 micromol cm(-2) h(-1) s-m, versus 2.6+/-1.4 micromol cm(-2) h(-1) m-s). Furthermore, the secretory flux closely matched the resulting change in I(SC) with serosal NH(4)(+), showing that the transepithelial flux of NH(4)(+) could account for the outward current response. Addition of 50 nM bafilomycin A to the mucosal solution completely eliminated serosal to mucosal NH(4)(+) transport, implicating an apical V-type H(+)-ATPase in this transport process. The I(SC) response to NH(4)(+) was partially inhibited by ouabain, a blocker of the Na(+)/K(+)-ATPase, but only minimally affected by bumetanide, an inhibitor of the serosal Na(+)-K(+)-2Cl(-) cotransporter. Active NH(4)(+) extrusion across the mucosal membrane, combined with low permeability to NH(3) in this tissue, allow for maintenance of steep ammonia gradients across the colonic epithelium and protection from ammonia toxicity. Furthermore, these studies indicate that the hen colon may be a useful new model system for the study of NH(4)(+) transport.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2009.02.023DOI Listing

Publication Analysis

Top Keywords

nh4+
13
outward current
12
cm-2 h-1
12
colonic epithelium
8
addition nh4+
8
negative isc
8
current response
8
isc serosal
8
serosal nh4+
8
isc response
8

Similar Publications

Mangrove forests are increasingly recognized as vital blue carbon ecosystems due to their high carbon sequestration capacity, primarily through the accumulation of soil organic carbon (SOC). Recent research highlights that, in addition to SOC, dissolved inorganic carbon (DIC), particularly in the form of bicarbonate (HCO₃⁻), plays a crucial role in carbon sequestration by being exported from these ecosystems to adjacent coastal waters. This study aims to investigate the previously unexamined mechanisms behind bicarbonate production in mangrove soils.

View Article and Find Full Text PDF

Aerosol ammonium (NH) is a critical component of particulate matter that affects air pollution, climate, and human health. Isotope-based source apportionment of NH is essential for ammonia (NH) mitigation but the role of kinetic vs equilibrium controls on nitrogen isotope (δN) fractionation between NH and NH remains unresolved. Based on concurrent measurements of NH and NH in winter Beijing, we observed that the difference of δN between NH and NH on clean days (3.

View Article and Find Full Text PDF

Ultra-fast activated NH-intercalated vanadium oxide cathode for high-performance aqueous zinc-ion batteries.

J Colloid Interface Sci

December 2024

School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China. Electronic address:

Vanadium-based oxides hold immense promise as cathode materials for aqueous zinc-ion batteries (AZIBs); however, their practical implementation faces a significant hurdle: a prolonged activation period is typically required to achieve peak performance. This activation process, which often requires hundreds of cycles, arises from the complex behavior of mixed-valence vanadium systems. In this paper, we propose a solution based on an elegant and simple electrical activation strategy.

View Article and Find Full Text PDF

Fluoride and nitrogen contamination and potential health risks in the groundwater of a typical agricultural region.

J Water Health

December 2024

Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Area of Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, Shaanxi 710054, China; School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, Shaanxi 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China E-mail:

Fluoride and nitrogen contamination is a global concern and has been a serious problem in agricultural areas. This study aims to identify the source of fluoride and nitrogen in the groundwater and assess groundwater quality and human health risks in the Guanzhong Plain, northwest China. The results showed that the concentrations were 0.

View Article and Find Full Text PDF

With the accelerated urbanization and economic development in Northwest China, the efficiency of urban wastewater treatment and the importance of water quality management have become increasingly significant. This work aims to explore urban wastewater treatment and carbon reduction mechanisms in Northwest China to alleviate water resource pressure. By utilizing online monitoring data from pilot systems, it conducts an in-depth analysis of the impacts of different wastewater treatment processes on water quality parameters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!