In this study 635 lactic acid bacteria of food origin were evaluated for their potential application as protective cultures in foods. A stepwise selection method was used to obtain the most appropriate strains for application as protective cultures in chicken meat. Specifically, all strains were examined for antimicrobial activity against various Gram positive and Gram negative pathogenic and spoilage bacteria. Strains exhibiting anti-bacterial activity were subsequently examined for survival in simulated food processing and gastrointestinal tract conditions, such as high temperatures, low pH, starvation and the presence of NaCl and bile salts. Selected strains where then examined for basic safety properties such as antibiotic resistance and haemolytic potential, while their antimicrobial activity was further investigated by PCR screening for possession of known bacteriocin genes. Two chosen strains were then applied on raw chicken meat to evaluate their protective ability against two common food pathogens, Listeria monocytogenes and Salmonella enteritidis, but also to identify potential spoilage effects by the application of the protective cultures on the food matrix. Antimicrobial activity in vitro was evident against Gram positive indicators, mainly Listeria and Brochothrix spp., while no antibacterial activity was obtained against any of the Gram negative bacteria tested. The antimicrobial activity was of a proteinaceous nature while strains with anti-listerial activity were found to possess one or more bacteriocin genes, mainly enterocins. Strains generally exhibited sensitivity to pH 2.0, but good survival at 45 degrees C, in the presence of bile salts and NaCl as well as during starvation, while variable survival rates were obtained at 55 degrees C. None of the strains was found to be haemolytic while variable antibiotic resistance profiles were obtained. Finally, when the selected strains Enterococcus faecium PCD71 and Lactobacillus fermentum ACA-DC179 were applied as protective cultures in chicken meat against L. monocytogenes and S. enteritidis respectively, a significantly reduced growth of these pathogenic bacteria was observed. In addition, these two strains did not appear to have any detrimental effect on biochemical parameters related to spoilage of the chicken meat.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2009.01.027DOI Listing

Publication Analysis

Top Keywords

chicken meat
20
protective cultures
16
antimicrobial activity
16
application protective
12
strains
10
lactic acid
8
acid bacteria
8
raw chicken
8
listeria monocytogenes
8
monocytogenes salmonella
8

Similar Publications

MMP2 regulates proliferation and differentiation in chicken primary myoblasts, and RNA-seq screens for key genes.

Gene

January 2025

Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang 330032 China. Electronic address:

The growth and development of chicken skeletal muscle directly affects chicken meat production, which is very important for broiler industry. Matrix metallopeptidase 2 (MMP2) exists in skeletal muscle. However, the underlying regulating of MMP2 remain unknown.

View Article and Find Full Text PDF

Despite extensive experience with influenza surveillance in humans in Senegal, there is limited knowledge about the actual situation and genetic diversity of avian influenza viruses (AIVs) circulating in the country, hindering control measures and pandemic risk assessment. Therefore, as part of the "One Health" approach to influenza surveillance, we conducted active AIV surveillance in two live bird markets (LBMs) in Dakar to better understand the dynamics and diversity of influenza viruses in Senegal, obtain genetic profiles of circulating AIVs, and assess the risk of emergence of novel strains and their transmission to humans. Cloacal swabs from poultry and environmental samples collected weekly from the two LBMs were screened by RT-qPCR for H5, H7, and H9 AIVs.

View Article and Find Full Text PDF

Infectious Laryngotracheitis Virus and Avian Metapneumovirus: A Comprehensive Review.

Pathogens

January 2025

College of Pharmacy, Yeungnam University, Gyeongsan-si 38541, Gyeongsangbuk-do, Republic of Korea.

Respiratory avian viral diseases significantly impact the world poultry sector, leading to notable economic losses. The highly contagious DNA virus, infectious laryngotracheitis virus, and the RNA virus, avian metapneumovirus, are well known for their prevalent effects on avian respiratory systems. The infectious laryngotracheitis virus (ILTV), stemming from the family, manifests as an upper respiratory disease within birds.

View Article and Find Full Text PDF

Very virulent plus Marek's disease virus (vv+MDV) induces severe immunosuppression in commercial chickens. In this study, we evaluated how three Gallid alphaherpesvirus 2 (GaHV-2) vaccines (CVI-988, rMd5-BAC∆Meq, and CVI-LTR) protected against two negative outcomes of vv+MDV infection: (1) reduced viability and frequency of immune cells in the spleen and (2) decreased efficacy of the CEO (chicken embryo origin) vaccine against infectious laryngotracheitis challenge. At 25 days post-infection with vv+MDV 686, all vaccines are protected against the reduced viability of splenocytes.

View Article and Find Full Text PDF

Bioactive compounds and organic acids are applied to a wide range of foods against different types of foodborne pathogens. In the present study, carvacrol and thymol (1000 mg/L) were applied in wine-based marinades, alone or in combination with them and in combination with tartaric acid, malic acid, ascorbic acid, citric acid, and acetic acid (in concentration 0.1% /), in chicken and beef fillets and their antimicrobial activity, antioxidant capacity, and pH were estimated during refrigerated storage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!