Endothelin is a 21 amino acid peptide which is produced by the vascular endothelium and is believed to be the mediator of endothelium-dependent vasoconstriction. In the current study we assessed the ability of synthetic human endothelin-1 to affect prenodal lymphatic vessel contractility in the canine forelimb. Intralymphatic infusion of endothelin at 1.09 x 10(-9), 1.09 x 10(-8) and 1.09 x 10(-7) M significantly constricted lymphatic vessels as evidenced by dose-dependent increases in lymphatic perfusion pressure. The increase in lymphatic perfusion pressure seen during intralymphatic infusion of endothelin at 1.09 x 10(-8) M during the intra-arterial infusion of phentolamine was not significantly different from that seen prior to phentolamine, indicating that endothelin-mediated lymphatic constriction is not alpha-receptor mediated. Intra-arterial infusion of endothelin at three infusion rates significantly increased forelimb arterial, systemic and lymphatic perfusion pressures. The constriction seen when endothelin (1.09 x 10(-8) M) was infused intralymphatically in the intact lymphatic system was not significantly different from that observed when only the prenodal lymph vessel was perfused. This indicated that the lymph nodes and efferent lymph vessels do not contribute significantly to the lymphatic constriction produced by endothelin. These data are consistent with the hypothesis that endothelin may modulate lymphatic function under either normal or pathophysiological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0167-0115(91)90256-g | DOI Listing |
Front Pharmacol
November 2024
Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD, United States.
Introduction: Endothelin-1 (ET-1) regulates renal and vascular function, but the clinical utility of selective ET receptor antagonists has been limited due to associated fluid retention. The mechanisms underlying fluid retention remain poorly understood but could be a consequence of changes in ET-1 binding to the unantagonized ET receptor, either through increased ET-1 or non-selective ET.
Methods: A mathematical model of ET-1 kinetics was developed to quantify effects of ET antagonist exposure and selectivity on concentrations of ET-1 and its complexes with ET and ET receptors.
Peptides
January 2025
School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China. Electronic address:
Placenta
December 2024
Department of Physiology, Development & Neuroscience, University of Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, UK; BHF Cardiovascular Centre for Research Excellence, University of Cambridge, UK; Strategic Research Initiative in Reproduction, University of Cambridge, UK. Electronic address:
Introduction: Preeclamptic patients, both lean and obese, present with elevated leptin levels which are associated with the development of maternal endothelial dysfunction and adverse fetal outcomes, such as growth restriction, leading to low birth weight. Recent studies in pregnant mice demonstrate that mid-late gestation leptin infusion induces clinical characteristics of preeclampsia, including elevated maternal blood pressure, maternal endothelial dysfunction and fetal growth restriction. However, whether leptin triggers placental stress responses that contribute to adverse fetal outcomes as in preeclampsia is unknown.
View Article and Find Full Text PDFAdv Exp Med Biol
October 2024
Department of Neurological Surgery, Sonoda Daiichi Hospital, Tokyo, Japan.
Maternal obesity increases the risk of cardiovascular and metabolic disease in the offspring both during childhood and adult life. Pregnant women and mice with obesity have lower circulating levels of adiponectin (ADN) compared to lean controls. ADN is an adipokine involved in regulating energy metabolism, vascular function, and placental function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!