Leaf area index (LAI) is an important biophysical parameter, and is the critical variable in many ecology models, productivity models and carbon circulation study. Based on the field experiment data, an evaluation of soybean LAI retrieval methods was conducted using NDVI (normalized difference vegetation index) and RVI (ratio vegetation index), principle component analysis (PCA) and neural network (NN) methods, and the estimate effects of three methods were compared. The results showed that the three methods have an ideal effect on the LAI estimation. R2 of validated model of vegetation indices, PCA, NN were 0.753 (NDVI), 0.758 (RVI), 0.883, 0.899. PCA and NN methods were better with higher precision, and PCA method was the best, as its RMSE (0.202) was slower than the two vegetation indices (RMSEs of NDVI and RVI were 0.594 and 0.616) and NN (RMSE was 0.413) method. While the LAI was small, vegetation indices were obvious for removing the noise from soil and atmospheric effect and obtained the good evaluation result. PCA showed better effect for all LAI. LAI affected the estimating result of NN method moderately. As for the NN method, modeled LAI value and measured LAI regression formula slope was the nearest to 1 with R2 of 0.949, which showed a great potential for LAI estimating. As a whole, PCA and NN methods were the prior selection for LAI estimation, which should be attributed to the application of hyperspectral information of many bands.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 5, D-53115, Bonn, Germany.
Climate change significantly challenges smallholder mixed crop-livestock (MCL) systems in sub-Saharan Africa (SSA), affecting food and feed production. This study enhances the SIMPLACE modeling framework by incorporating crop-vegetation-livestock models, which contribute to the development of sustainable agricultural practices in response to climate change. Applying such a framework in a domain in West Africa (786,500 km) allowed us to estimate the changes in crop (Maize, Millet, and Sorghum) yield, grass biomass, livestock numbers, and greenhouse gas emission in response to future climate scenarios.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Resources and Environmental Science, Hubei University, Wuhan, China.
The preservation of Chinese traditional villages plays a crucial role in promoting the sustainable development of rural natural, cultural, and ecological environments. It is also a key strategy for achieving rural revitalization. Current research on traditional villages predominantly focuses on the realm of cultural landscapes, with an emphasis on preserving the cultural ecological value of these communities.
View Article and Find Full Text PDFSci Total Environ
January 2025
Forest Fire Laboratory (LABIF), Forestry Engineering Department, University of Cordoba, 14071 Cordoba, Spain. Electronic address:
Most Mediterranean ecosystems have been profoundly shaped by wildfires, driving the evolution of plant species. Through photo interpretation and field inventories, this research assessed vegetation dynamics from 1984 to 2021, examining how fire severity and recurrence, key fire regime variables, influenced changes in structure and woody species diversity. Using two burn scars (1988 and 2006), we identified four scenarios dominated by Pinus pinea tree species: control (unburned), areas burned once (either in 1988 or 2006), and twice (in both 1988 and 2006).
View Article and Find Full Text PDFNature
January 2025
Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada.
Positive effects of plant diversity on productivity have been globally demonstrated and explained by two main effects: complementarity effects and selection effects. However, plant diversity experiments have shown substantial variation in these effects, with driving factors poorly understood. On the basis of a meta-analysis of 452 experiments across the globe, we show that productivity increases on average by 15.
View Article and Find Full Text PDFTree Physiol
January 2025
Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
Understanding drought resistance mechanisms is crucial for breeding poplar species suited to arid and semi-arid regions. This study explored the drought responses of three newly developed 'Zhongxiong' series poplars using integrated transcriptomic and physiological analyses. Under drought stress, poplar leaves showed significant changes in differentially expressed genes (DEGs) linked to photosynthesis-related pathways, including photosynthesis-antenna proteins and carbon fixation, indicating impaired photosynthetic function and carbon assimilation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!