Objective: S100A4 has been shown to be increased in osteoarthritic (OA) cartilage and to stimulate chondrocytes to produce matrix metalloproteinase 13 (MMP-13) through activation of the receptor for advanced glycation end products (RAGE). The aim of this study was to examine the mechanism of S100A4 secretion by chondrocytes.
Methods: Human articular chondrocytes isolated from ankle cartilage were stimulated with 10 ng/ml of interleukin-1beta (IL-1beta), IL-6, IL-7, or IL-8. Cells were pretreated with either a JAK-3 inhibitor, brefeldin A, or cycloheximide. Immunoblotting with phospho-specific antibodies was used to determine the activation of signaling proteins. Secretion of S100A4 was measured in conditioned media by immunoblotting, and MMP-13 was measured by enzyme-linked immunosorbent assay.
Results: Chondrocyte secretion of S100A4 was observed after treatment with IL-6 or IL-8 but was much greater in cultures treated with equal amounts of IL-7 and was not observed after treatment with IL-1beta. IL-7 activated the JAK/STAT pathway, with increased phosphorylation of JAK-3 and STAT-3, leading to increased production of S100A4 and MMP-13. Overexpression of a dominant-negative RAGE construct inhibited the IL-7-mediated production of MMP-13. Pretreatment of chondrocytes with a JAK-3 inhibitor or with cycloheximide blocked the IL-7-mediated secretion of S100A4, but pretreatment with brefeldin A did not.
Conclusion: IL-7 stimulates chondrocyte secretion of S100A4 via activation of JAK/STAT signaling, and then S100A4 acts in an autocrine manner to stimulate MMP-13 production via RAGE. Since both IL-7 and S100A4 are up-regulated in OA cartilage and can stimulate MMP-13 production by chondrocytes, this signaling pathway could contribute to cartilage destruction during the development of OA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2676111 | PMC |
http://dx.doi.org/10.1002/art.24295 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!