Human embryonic stem cells (hESCs) have previously been cultured on three dimensional (3D) biodegradable polymer scaffolds. Although complex structures were formed from the hESCs, very little is known about the mechanism of adhesion of these cells to the surfaces of the scaffolds. In this study, we achieved the efficient adhesion of pluripotent hESCs to 3D poly(lactic-co-glycolic acid) (PLGA) scaffolds based on our data from a novel two dimensional (2D) model that imitates the surface properties of the scaffolds. In the 2D model, single cell preparations of pluripotent hESCs adhered efficiently and predominantly to PLGA surfaces coated with laminin in comparison to collagen I, collagen IV, or fibronectin-coated surfaces. Flow cytometry analysis revealed that almost all of the pluripotent single cells expressed the integrin alpha 6, with a small percentage also expressing alpha 3ss1, which facilitates adhesion to laminin. This data was then translated into the 3D environment, with the efficient binding of single pluripotent hESCs to PLGA scaffolds coated with laminin. The utility of this system was shown by the directed differentiation of single hESCs seeded within laminin-coated scaffolds toward the endoderm lineage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.32401DOI Listing

Publication Analysis

Top Keywords

pluripotent hescs
12
human embryonic
8
embryonic stem
8
stem cells
8
polylactic-co-glycolic acid
8
plga scaffolds
8
coated laminin
8
hescs
6
scaffolds
6
modeling adhesion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!