Cell adhesion and cell migration are two primary cellular phenomena for which in vitro approaches may be exploited to effectively dissect the individual events and underlying molecular mechanisms. The use of assays dedicated to the analysis of cell adhesion and migration in vitro also afford an efficient way of conducting larger basic and applied research screenings on the factors affecting these processes and are potentially exploitable in the context of routine diagnostic, prognostic, and predictive tests in the biological and medical fields. Therefore, there is a longstanding continuum in the interest in devising more rationale such assays and major contributions in this direction have been provided by the advent of procedures based on fluorescence cell tagging, the design of instruments capable of detecting fluorescent signals with high sensitivity, and informatic tools allowing sophisticated elaboration of data generated through these instruments. In this report, we describe three representative fluorescence-based model assays for the qualitative and quantitative assessment of cell adhesion and cell locomotion in static and dynamic conditions. The assays are easily performed, accurate and reproducible, and can be automated for high-to-medium throughput screenings of cell behavior in vitro. Performance of the assays involves the use of certain dedicated disposable accessories, which are commercially available, and a few instruments that, due to their versatility, can be regarded as constituents of a more generic laboratory setup.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-413-1_16DOI Listing

Publication Analysis

Top Keywords

cell adhesion
16
cell
8
analysis cell
8
adhesion migration
8
adhesion cell
8
assays
5
fluorescence-based assays
4
vitro
4
assays vitro
4
vitro analysis
4

Similar Publications

TSPOAP1-AS1: A Novel Biomarker for the Prognosis and Therapeutic Target in Cervical Cancer.

Comb Chem High Throughput Screen

January 2025

Thoracic and Abdominal Radiotherapy Department I, Meizhou People's Hospital, Meizhou 514031, Guangdong, China.

Background: TSPOAP1 antisense RNA 1 (TSPOAP1-AS1) is a long non-coding RNA (lncRNA) that has received widespread attention in oncology research in recent years. Its role and mechanism in some cancers have gradually been revealed. However, it is not clear what role TSPOAP1-AS1 plays in cervical cancer (CESC).

View Article and Find Full Text PDF

Background: Regulator of G protein signaling (RGS) proteins participate in tumor formation and metastasis by acting on the α-subunit of heterotrimeric G proteins. The specific effect of RGS, particularly , on the progression of gastric cancer (GC) is not yet clear.

Aim: To explore the role and underlying mechanisms of action of in GC development.

View Article and Find Full Text PDF

Cryogenic, but not hypothermic, preservation disrupts the extracellular matrix of cell sheets.

Bioact Mater

April 2025

3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Rua Ave 1, Edifício 1 (Sede), 4805-694 Barco, Guimarães, Portugal.

Cell sheet (CS)-based approaches hold significant potential for tissue regeneration, relying on the extracellular matrix (ECM) for success. Like in native tissues, the ECM provides structural and biochemical support for cellular homeostasis and function. Effective preservation strategies that maintain ECM integrity are critical to enhance the therapeutic potential of CS-based approaches.

View Article and Find Full Text PDF

Uncontrollable non-compressible hemorrhage and traumatic infection have been major causes of mortality and disability in both civilian and military populations. A dressing designed for point-of-care control of non-compressible hemorrhage and prevention of traumatic infections represents an urgent medical need. Here, a novel self-gelling sponge OHN@ε-pL is developed, integrating N-succinimidyl ester oxidized hyaluronic acid (OHN) and ε-poly-L-lysine (ε-pL).

View Article and Find Full Text PDF

The cadherin superfamily of proteins is critical for cell-cell interactions and demonstrates tissue-specific expression profiles. In cancers, disruption of cell-cell adhesion is frequently associated with oncogenesis and metastasis. As such, these proteins have been the targets of multiple attempts to develop novel therapeutics in malignancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!