Production of cordycepin and mycelia by submerged fermentation of Cordyceps militaris in mixture natural culture.

Appl Biochem Biotechnol

Department of Food Science and Technology, Nanjing Agricultural University, 1 Weigang street, Nanjing, Jiangsu 210095, China.

Published: August 2009

The submerged fermentation of Cordyceps militaris for cordycepin production and mycelial growth was investigated in this study. Three natural materials of brown rice paste (BRP), beerwort (B), and soybean meal juice (SMJ) were used for fermentation of C. militaris in shaking flasks. The effects of the ratio of three natural materials on dry mycelium weight (DMW) and on cordycepin yield (CY) were analyzed. D-Optional mixture design was used to optimize the ratio of these materials. Compared with the signal culture, the higher mycelial growth and cordycepin production were obtained in mixture. The analysis of Design Expert 6.0 indicated that BRP, B, and SMJ very significantly influenced (P < 0.001) DMW and CY of C. militaris, respectively. The highest DMW (18.96 g/l) and CY (2.17 mg/g) were both obtained at a ratio of 53:6:42. The experiments' results indicated that the above mixture of these natural materials by D-optional mixture design can be used as a proper medium for the growth of mycelium and the production of cordycepin.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-009-8567-2DOI Listing

Publication Analysis

Top Keywords

natural materials
12
production cordycepin
8
submerged fermentation
8
fermentation cordyceps
8
cordyceps militaris
8
mixture natural
8
cordycepin production
8
mycelial growth
8
three natural
8
d-optional mixture
8

Similar Publications

The Crimean Congo virus has been reported to be a part of the spherical RNA-enveloped viruses from the Bunyaviridae family. Crimean Congo fever (CCHF) is a fatal disease with having fatality rate of up to 40%. It is declared endemic by the World Health Organization.

View Article and Find Full Text PDF

Enhanced mechanical properties of alkali-activated dolomite dust emulsified asphalt composites.

Sci Rep

December 2024

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, China.

The dolomite dust-emulsified asphalt composite (DAC) with excellent mechanical properties was successfully prepared using alkali activation. The effects of different alkali concentrations and emulsified asphalt contents on the mechanical properties of the materials were studied. And the micro-mechanisms of its mechanical performance changes were analyzed through SEM and XRD characterization.

View Article and Find Full Text PDF

An fMRI study on the generalization of motor learning after brain actuated supernumerary robot training.

NPJ Sci Learn

December 2024

Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, China.

Generalization is central to motor learning. However, few studies are on the learning generalization of BCI-actuated supernumerary robotic finger (BCI-SRF) for human-machine interaction training, and no studies have explored its longitudinal neuroplasticity mechanisms. Here, 20 healthy right-handed participants were recruited and randomly assigned to BCI-SRF group or inborn finger group (Finger) for 4-week training and measured by novel SRF-finger opposition sequences and multimodal MRI.

View Article and Find Full Text PDF

Electronic ferroelectricity in monolayer graphene moiré superlattices.

Nat Commun

December 2024

Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.

Extending ferroelectric materials to two-dimensional limit provides versatile applications for the development of next-generation nonvolatile devices. Conventional ferroelectricity requires materials consisting of at least two constituent elements associated with polar crystalline structures. Monolayer graphene as an elementary two-dimensional material unlikely exhibits ferroelectric order due to its highly centrosymmetric hexagonal lattices.

View Article and Find Full Text PDF

The mechanical responses of sandy soil under dynamic loading is closely related to protective engineering and geotechnical engineering, is still not fully understood. To investigate the energy attenuation law and propagation velocity of compressed waves in dry sandy soil, this paper focuses on the dynamic response of compression waves in the specimen under single impact and repetitive impact conditions using an improved split Hopkinson pressure bar (SHPB). The results reveal that the length of the specimen follows an exponential relationship with the attenuation of the peak stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!