The mechanism of protonic relaxation is shown to take place in molecular systems containing hydrogen bonds. The mechanism arises from the proton redistribution between two stable states on hydrogen bond lines. This redistribution occurs due to changes of hydrogen bond double well potential, brought about by changes of the electronic state of a molecular system. A characteristic of the relaxation process is that it takes place due to the proton tunneling along hydrogen bonds. The charge shift causes electrostatic potential variation in the electron localization area, which leads to the shift of molecular system energy levels and changes its redox potential. The characteristic time of the protonic relaxation is shown to depend essentially on hydrogen bond bending strain, which increases with the temperature rise and decreases abruptly the efficiency of proton redistribution. Hence, the rate of this process decreases with temperature, in contrast to the activation process. This relaxation process is shown to be responsible for energetic characteristics of recombination reaction P+QA--->PQA (free energy difference DeltaG and/or reorganization energy lambda), temperature dependence in Rhodobacter sphaeroides RC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b811014j | DOI Listing |
Sci Rep
December 2024
Department of Pharmacognosy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
Despite significant advancements with combination anti-retroviral agents, eradicating human immunodeficiency virus (HIV) remains a challenge due to adverse effects, adherence issues, and emerging viral resistance to existing therapies. This underscores the urgent need for safer, more effective drugs to combat resistant strains and advance acquired immunodeficiency syndrome (AIDS) therapeutics. Eight triterpene esters (1-8) were identified from Uncaria rhynchophylla hooks.
View Article and Find Full Text PDFSci Rep
December 2024
Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-8, Santa Maria, RS, 97105-900, Brazil.
This paper presented the preparation, characterization, and adsorption properties of Brazil nut shell activated carbon for catechol removal from aqueous solutions. The equilibrium adsorption of catechol molecules on this activated was experimentally quantified at pH 6 and temperatures ranging from 25 to 55 °C, and at 25 °C and pH ranging from 6 to 10. These results were utilized to elucidate the role of surface functionalities through statistical physics calculations.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.
View Article and Find Full Text PDFAnn Clin Transl Neurol
December 2024
Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China.
Background: Variants in the GABRA2 gene, which encodes the α2 subunit of the γ-aminobutyric acid A receptor, have been linked to a rare form of developmental and epileptic encephalopathy (DEE) referred to as DEE78. Only eight patients have been reported globally. This study presents the clinical presentation and genetic analysis of a Chinese family with a child diagnosed with DEE78, due to a novel GABRA2 variant.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!