Ossification sequences of the skull in extant Urodela and in Permo-Carboniferous Branchiosauridae have already been used to study the origin of lissamphibians. But most of these studies did not consider some recent methods developed to analyze the developmental sequences within a phylogenetic framework. Here, we analyze the ossification sequences of 24 cranial bones of 23 extant species of salamanders using the event-pairing method. This reveals new developmental synapomorphies for several extant salamander taxa and ancestral sequences for Urodela under four alternative reference phylogenies. An analysis with the 12 bones for which ossification sequence data are available in urodeles and in the branchiosaurid Apateon is also performed in order to compare the ancestral condition of the crown-group of Urodela to the sequence of Apateon. This reveals far more incompatibilities than previously suggested. The similarities observed between some extant salamanders and branchiosaurids may result from extensive homoplasy, as the extreme variation observed in extant Urodela suggests, or be plesiomorphic, as the conservation of some ossification patterns observed in other remotely related vertebrates like actinopterygians suggests. We propose a new, simpler method based on squared-change optimization to estimate the relative timing of ossification of various bones of hypothetical ancestors, and use independent-contrasts analysis to estimate the confidence intervals around these times. Our results show that the uncertainty of the ancestral ossification sequence of Urodela is much greater than event-pairing suggests. The developmental data do not allow to conclude that branchiosaurids are closely related to salamanders and their limited taxonomic distribution in Paleozoic taxa precludes testing hypotheses about lissamphibian origins. This is true regardless of the analytical method used (event-pairing or our new method based on squared-change parsimony). Simulations show that the new analytical method is generally more powerful to detect evolutionary shifts in developmental timing, and has lower Type I error rate than event-pairing. It also makes fewer errors in ancestral character value or state assignment than event-pairing.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-142X.2009.00318.xDOI Listing

Publication Analysis

Top Keywords

ossification sequences
12
extant urodela
8
event-pairing method
8
ossification sequence
8
observed extant
8
method based
8
based squared-change
8
analytical method
8
event-pairing
6
ossification
6

Similar Publications

A cross-linked coating loaded with antimicrobial peptides for corrosion control, early antibacterial, and sequential osteogenic promotion on a magnesium alloy as orthopedic implants.

Acta Biomater

December 2024

Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, PR China. Electronic address:

Magnesium (Mg)-based alloys have been recognized as desirable biodegradable materials for orthopedic implants. However, their clinical application has been limited by rapid degradation rates, insufficient antibacterial and osteogenic-promotion properties. Herein, a MgF priming layer was first constructed on AZ31 surface.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.

View Article and Find Full Text PDF

GraphLOGIC: Lethality prediction of osteogenesis imperfecta on type I collagen by a mechanics-informed graph neural network.

Int J Biol Macromol

December 2024

Department of Civil Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan. Electronic address:

Collagen plays a crucial role in human bodies and has a significant presence in connective tissues. As such, the impact of collagen mutations can be devastating. Osteogenesis imperfecta (OI), a rare genetic disease affecting 1 in every 15,000 to 20,000 people, is one such example characterized by brittle bones.

View Article and Find Full Text PDF

Aims: Ossifying fibromyxoid tumour is a rare mesenchymal neoplasm predominantly affecting adults characterised by a multinodular growth pattern and the presence of a fibrous pseudocapsule with areas of ossification. Prompted by the recognition of a non-ossifying ossifying fibromyxoid tumour with lipomatous differentiation which caused diagnostic difficulty, we sought to further explore cases of ossifying fibromyxoid tumour with non-osseous heterologous elements.

Methods And Results: A search of our institutional and consultation archives revealed three additional cases that demonstrated lipomatous components and two cases with cartilaginous differentiation.

View Article and Find Full Text PDF

Premature osteoporosis due to parathyroid hormone-related peptide (PTHrP) dysfunction presents significant bone health challenges. This study explores the role of p16-mediated cellular senescence in this condition using a Pthrp knock-in (KI) mouse model lacking the nuclear localization sequence and C-terminus of PTHrP. We generated p16⁻⁄⁻KI mice and compared them with wild-type, p16⁻⁄⁻, and KI mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!