A combined hydrodynamic-magnetic bearing allows the design of rotary blood pumps that are not encumbered with mechanical bearings and magnets requiring sensors or electrical power. However, such pumps have so far needed very small and accurately manufactured gaps between rotor and housing to assure effective hydromagnetic bearing behavior. In order to use this concept in disposable pump heads, a design that allows larger rotor-housing gaps, and thus larger manufacturing tolerances, is needed. A pump with passive magnetic bearings and a gap between rotor and housing in the range of 0.5 mm was designed. Numerical simulations were performed to optimize the rotor geometry at low levels of shear stress. An experimental test stand was used to find a range of speeds and gap settings that resulted in low levels of vibration and useful pressure-flow relationships. Three different rotor geometries were tested using a viscosity-adjusted test fluid. Blood damage tests were conducted within the desirable range of speeds and gap settings. In this study stable pump performance was demonstrated at total gap widths between 0.3 and 0.7 mm at flows of 0-10 L/min, with afterloads up to 230 mm Hg. Best performance was achieved with rotors sliding on a fluid pillow between the rotor and the outer housing at a gap distance of 50 to 250 microm. The inner gap distance, between the rotor and the inner housing, could be as great as 500 microm. Hemolysis tests on the prototype within the chosen operating range showed lower values (NIH = 0.0029 +/- 0.0012 g/100 L) than the Biomedicus BP-80 pump (NIH = 0.0033 +/- 0.0011 g/100 L). In conclusion, it is possible to build rotary blood pumps with passive hydromagnetic bearings that have large gaps between their rotors and housings. Rotor behavior is sensitive to the position of the permanent magnetic drive unit. To minimize vibration and blood damage, the fluid gaps and the rotational speed have to be adjusted according to the desired operating point of the pump. Further study is needed to optimize the magnetic drive unit and to ascertain its ability to withstand inertial loads imposed by sudden movements and external shock.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1525-1594.2009.00715.xDOI Listing

Publication Analysis

Top Keywords

rotary blood
12
blood pumps
8
rotor housing
8
low levels
8
range speeds
8
speeds gap
8
gap settings
8
blood damage
8
gap distance
8
magnetic drive
8

Similar Publications

Artificial molecular motors in biological applications.

Front Mol Biosci

January 2025

Key Laboratory of Thyroid Disease, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.

Molecular motors are the cornerstone for the maintenance of living systems and mediate almost all fundamental processes involved in cellular trafficking. The intricate mechanisms underlying natural molecular motors have been elucidated in detail, inspiring researchers in various fields to construct artificial systems with multi-domain applications. This review summarises the characteristics of molecular motors, biomimetic approaches for their design and operation, and recent biological applications.

View Article and Find Full Text PDF

Background: While teleconsultation has proven feasible for adult cancer patients, its utility in childhood cancer care in India is unknown. This study assesses caregiver satisfaction, feasibility, and the economic impact of teleconsultation for children with cancer.

Procedure: This mixed methods study was conducted in the pediatric cancer outpatient service at a tertiary care cancer center in India.

View Article and Find Full Text PDF

Background: Covalently closed circular DNA (cccDNA) is a stable, episomal form of HBV DNA. cccDNA is a true marker for the intrahepatic events in controlled CHB infection. Quantifying cccDNA is critical for monitoring disease progression, and efficacy of anti-viral therapies.

View Article and Find Full Text PDF

Sub-chronic Toxicity Study of Extract Towards Healthy Sprague Dawley Rats.

Iran J Pharm Res

May 2024

Department of Basic Medical Sciences, College of Medicine, University of Sulaimani, Sulaymaniyah, Republic of Iraq.

Background: species are commonly used as spices, flavorings, and food additives. Members of the genus offer many medicinal benefits but may also pose adverse effects on human health.

Objectives: To prepare a crude leaf extract of and assess its toxicity profile towards healthy rats.

View Article and Find Full Text PDF

Advancement of the Dragon Heart 7-Series for Pediatric Patients With Heart Failure.

Artif Organs

January 2025

BioCirc Research Laboratory, School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA.

Background: Safe and effective pediatric blood pumps continue to lag far behind those developed for adults. To address this growing unmet clinical need, we are developing a hybrid, continuous-flow, magnetically levitated, pediatric total artificial heart (TAH). Our hybrid TAH design, the Dragon Heart (DH), integrates both an axial flow and centrifugal flow blood pump within a single, compact housing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!