A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats. | LitMetric

The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats.

Eur J Neurosci

Department of Neuroendocrinology, University of Lübeck, Ratzeburger Allee 160, Haus 23a, 23538 Lübeck, Germany.

Published: March 2009

AI Article Synopsis

  • The study explores how memory consolidation during sleep is influenced by brain activity patterns, specifically slow oscillations, spindles, and ripples.
  • Learning tasks were shown to increase the synchrony of these brain waves in both humans and rats, affecting how information transfers from the hippocampus to the neocortex.
  • Results indicate that slow oscillations may enhance this transfer by synchronizing brain activity post-learning, but their effect is weaker in rats, hinting at different mechanisms at play for odor-based learning.

Article Abstract

The mechanisms underlying off-line consolidation of memory during sleep are elusive. Learning of hippocampus-dependent tasks increases neocortical slow oscillation synchrony, and thalamocortical spindle and hippocampal ripple activity during subsequent non-rapid eye movement sleep. Slow oscillations representing an oscillation between global neocortical states of increased (up-state) and decreased (down-state) neuronal firing temporally group thalamic spindle and hippocampal ripple activity, which both occur preferentially during slow oscillation up-states. Here we examined whether slow oscillations also group learning-induced increases in spindle and ripple activity, thereby providing time-frames of facilitated hippocampus-to-neocortical information transfer underlying the conversion of temporary into long-term memories. Learning (word-pairs in humans, odor-reward associations in rats) increased slow oscillation up-states and, in humans, shaped the timing of down-states. Slow oscillations grouped spindle and rat ripple activity into up-states under basal conditions. Prior learning produced in humans an increase in spindle activity focused on slow oscillation up-states. In rats, learning induced a distinct increase in spindle and ripple activity that was not synchronized to up-states. Event-correlation histograms indicated an increase in spindle activity with the occurrence of ripples. This increase was prolonged after learning, suggesting a direct temporal tuning between ripples and spindles. The lack of a grouping effect of slow oscillations on learning-induced spindles and ripples in rats, together with the less pronounced effects of learning on slow oscillations, presumably reflects a weaker dependence of odor learning on thalamo-neocortical circuitry. Slow oscillations might provide an effective temporal frame for hippocampus-to-neocortical information transfer only when thalamo-neocortical systems are already critically involved during learning.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2009.06654.xDOI Listing

Publication Analysis

Top Keywords

slow oscillations
28
ripple activity
20
slow oscillation
16
oscillation up-states
12
increase spindle
12
slow
11
sleep slow
8
spindles ripples
8
learning
8
spindle hippocampal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!