Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mechanisms underlying off-line consolidation of memory during sleep are elusive. Learning of hippocampus-dependent tasks increases neocortical slow oscillation synchrony, and thalamocortical spindle and hippocampal ripple activity during subsequent non-rapid eye movement sleep. Slow oscillations representing an oscillation between global neocortical states of increased (up-state) and decreased (down-state) neuronal firing temporally group thalamic spindle and hippocampal ripple activity, which both occur preferentially during slow oscillation up-states. Here we examined whether slow oscillations also group learning-induced increases in spindle and ripple activity, thereby providing time-frames of facilitated hippocampus-to-neocortical information transfer underlying the conversion of temporary into long-term memories. Learning (word-pairs in humans, odor-reward associations in rats) increased slow oscillation up-states and, in humans, shaped the timing of down-states. Slow oscillations grouped spindle and rat ripple activity into up-states under basal conditions. Prior learning produced in humans an increase in spindle activity focused on slow oscillation up-states. In rats, learning induced a distinct increase in spindle and ripple activity that was not synchronized to up-states. Event-correlation histograms indicated an increase in spindle activity with the occurrence of ripples. This increase was prolonged after learning, suggesting a direct temporal tuning between ripples and spindles. The lack of a grouping effect of slow oscillations on learning-induced spindles and ripples in rats, together with the less pronounced effects of learning on slow oscillations, presumably reflects a weaker dependence of odor learning on thalamo-neocortical circuitry. Slow oscillations might provide an effective temporal frame for hippocampus-to-neocortical information transfer only when thalamo-neocortical systems are already critically involved during learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2009.06654.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!