Studies on wild-type and mutant glycosyltransferases have shown that they can transfer modified sugars with a versatile chemical handle, such as keto or azido group, that can be used for conjugation chemistry and detection of glycan residues on glycoconjugates. To detect the most prevalent glycan epitope, N-acetyllactosamine (LacNAc (Galbeta1-4GalNAcbeta)), we have mutated a bovine alpha1,3-galactosyltransferse (alpha3Gal-T)() enzyme which normally transfers Gal from UDP-Gal to the LacNAc acceptor, to transfer GalNAc or C2-modified galactose from their UDP derivatives. The alpha3Gal-T enzyme belongs to the alpha3Gal/GalNAc-T family that includes human blood group A and B glycosyltransferases, which transfer GalNAc and Gal, respectively, to the Gal moiety of the trisaccharide Fucalpha1-2Galbeta1-4GlcNAc. On the basis of the sequence and structure comparison of these enzymes, we have carried out rational mutation studies on the sugar donor-binding residues in bovine alpha3Gal-T at positions 280 to 282. A mutation of His280 to Leu/Thr/Ser/Ala or Gly and Ala281 and Ala282 to Gly resulted in the GalNAc transferase activity by the mutant alpha3Gal-T enzymes to 5-19% of their original Gal-T activity. We show that the mutants (280)SGG(282) and (280)AGG(282) with the highest GalNAc-T activity can also transfer modified sugars such as 2-keto-galactose or GalNAz from their respective UDP-sugar derivatives to LacNAc moiety present at the nonreducing end of glycans of asialofetuin, thus enabling the detection of LacNAc moiety of glycoproteins and glycolipids by a chemiluminescence method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464485 | PMC |
http://dx.doi.org/10.1021/bc800534r | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!