Decreased GABAergic signaling is among the more robust pathologies observed postmortem in schizophrenia; however, the functional consequences of this deficit are still largely unknown. Here, we demonstrate, in a verified animal model of schizophrenia, that a reduced expression of parvalbumin (PV)-containing interneurons is correlated with a reduction in coordinated neuronal activity during task performance in freely moving rats. More specifically, methylazoxymethanol acetate (MAM)-treated rats display a decreased density of parvalbumin-positive interneurons throughout the medial prefrontal cortex (mPFC) and ventral (but not dorsal) subiculum of the hippocampus. Furthermore, the reduction in interneuron functionality is correlated with a significantly reduced gamma-band response to a conditioned tone during a latent inhibition paradigm. Finally, deficits in mPFC and ventral hippocampal oscillatory activity are associated with an impaired behavioral expression of latent inhibition in MAM-treated rats. Thus, we propose that a decrease in intrinsic GABAergic signaling may be responsible, at least in part, for the prefrontal and hippocampal hypofunctionality observed during task performance, which is consistently observed in animal models as well as in schizophrenia in humans. In addition, a deficit in intrinsic GABAergic signaling may be the origin of the hippocampal hyperactivity purported to underlie the dopamine dysfunction in psychosis. Such information is central to gaining a better understanding of the disease pathophysiology and alternate pharmacotherapeutic approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754752 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5419-08.2009 | DOI Listing |
Int J Mol Sci
February 2025
Department of Anesthesiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
Dexmedetomidine (DEX) exhibits notable sedative, analgesic, and anesthetic-sparing properties. While growing evidence suggests these effects are linked to the modulation of γ-aminobutyric acid (GABA) system, the precise pre- and postsynaptic mechanisms of DEX action on cortical GABAergic signaling remain unclear. In this study, we applied whole-cell patch-clamp recording to investigate the impact of DEX on GABAergic transmission in layer 5 pyramidal neurons of the primary somatosensory cortex.
View Article and Find Full Text PDFNeuropharmacology
March 2025
Department of Life Sciences, University of Bath, Bath, BA2 7AY, United Kingdom. Electronic address:
The paraventricular thalamus (PVT) is a central node in the integration of stress- and reward-related information that may serve as a pivotal site for opioid receptors to exert their effects. Kappa opioid receptors (KOPrs) and mu opioid receptors (MOPrs) have dissociable and opposing roles in circuits of stress and reward. Interestingly, both are highly expressed in the PVT, however it is not known how aversive KOPr and rewarding MOPr signalling converges to dictate PVT activity and, by proxy, whole brain effects.
View Article and Find Full Text PDFbioRxiv
February 2025
Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016.
Cortical GABAergic interneurons (INs) are comprised of distinct types that provide tailored inhibition to pyramidal cells (PCs) and other INs, thereby enabling precise control of cortical circuit activity. INs expressing the neuropeptide vasoactive-intestinal peptide (VIP) have attracted attention recently following the discovery that they predominantly function by inhibiting dendritic-targeting somatostatin (SST) expressing INs, thereby disinhibiting PCs. This VIP-SST disinhibitory circuit motif is observed throughout the neocortex from mice to humans, and serves as a key mechanism for top-down (feedback) and context-dependent information processing.
View Article and Find Full Text PDFUnlabelled: Mating and other behaviors emerge during adolescence through the coordinated actions of steroid hormone signaling throughout the nervous system and periphery. In this study, we investigated the transcriptional dynamics of the medial preoptic area (MPOA), a critical region for reproductive behavior, using single-cell RNA sequencing (scRNAseq) and hybridization techniques in male and female mice throughout adolescence development. Our findings reveal that estrogen receptor 1 (Esr1) plays a pivotal role in the transcriptional maturation of GABAergic neurons within the MPOA during adolescence.
View Article and Find Full Text PDFCommun Biol
March 2025
Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Social status is closely linked to physiological and psychological states. Loss of social dominance can lead to brain disorders such as depression, but the underlying mechanisms remain unclear. The gut microbiota can sense stress and contribute to brain disorders via the microbiota-gut-brain axis (MGBA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!