Skeletal muscles are readily characterized by their location within the body and by the number and composition of their constituent muscle fibers. Here, we characterize a mutation that causes a severe reduction in the number of fibers comprising the tergal depressor of the trochanter muscle (TDT, or jump muscle), which functions in the escape response of the Drosophila adult. The wild-type TDT comprises over 20 large muscle fibers and four small fibers. In crossveinless (cv) mutants, the number of large fibers is reduced by 50%, and the number of small fibers is also occasionally reduced. This reduction in fiber number arises from a reduction in the number of founder cells contributing to the TDT at the early pupal stage. Given the role of cv in TGFbeta signaling, we determined whether this pathway directly impacts TDT development. Indeed, gain- and loss-of-function manipulations in the TGFbeta pathway resulted in dramatic increases and decreases, respectively, in TDT fiber number. By identifying the origins of the TDT muscle, from founder cells specified in the mesothoracic leg imaginal disc, we also demonstrate that the TGFbeta pathway directly impacts the specification of founder cells for the jump muscle. Our studies define a new role for the TGFbeta pathway in the control of specific skeletal muscle characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685931PMC
http://dx.doi.org/10.1242/dev.031567DOI Listing

Publication Analysis

Top Keywords

tgfbeta pathway
16
fiber number
12
jump muscle
12
founder cells
12
number
8
drosophila adult
8
muscle
8
muscle fibers
8
reduction number
8
small fibers
8

Similar Publications

Background: The intestinal microbiota regulates normal brain physiology and the pathogenesis of several neurological disorders. While prior studies suggested that this regulation operates through immune cells, the underlying mechanisms remain unclear. Leveraging two well characterized murine models of low-grade glioma (LGG) occurring in the setting of the neurofibromatosis type 1 (NF1) cancer predisposition syndrome, we sought to determine the impact of the gut microbiome on optic glioma progression.

View Article and Find Full Text PDF

Neddylation is a process of attaching neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to substrates for the protein function modulation via enzymatic cascades involving NEDD8-activating enzyme (E1), NEDD8-conjugating enzyme (E2), and NEDD8 ligase (E3). Defective in cullin neddylation 1 (DCN1) serves as a co-E3 ligase, that can simultaneously bind E2 UBE2M and cullin proteins to stabilize the catalytic center of the Cullin-Ring E3 ligase (CRL) complex, thereby promoting cullin neddylation. Neddylation is reported to be activated in diverse human diseases, and inhibition of protein neddylation has been regarded as a promising anticancer therapy.

View Article and Find Full Text PDF

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

Involvement of TGF-β, mTOR, and inflammatory mediators in aging alterations during myxomatous mitral valve disease in a canine model.

Geroscience

January 2025

Department for Basic and Preclinical Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.

Inflammaging, a state of chronic low-grade inflammation associated with aging, has been linked to the development and progression of various disorders. Cellular senescence, a state of irreversible growth arrest, is another characteristic of aging that contributes to the pathogenesis of cardiovascular pathology. Senescent cells accumulate in tissues over time and secrete many inflammatory mediators, further exacerbating the inflammatory environment.

View Article and Find Full Text PDF

FOXS1, frequently inactivated by promoter methylation, inhibited colorectal cancer cell growth by promoting TGFBI degradation through autophagy-lysosome pathway.

J Adv Res

January 2025

Biomedical Research Center, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China; Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016 Zhejiang, China. Electronic address:

Introduction: Tumor suppressor gene (TSG) inactivation by epigenetic modifications contributes to the carcinogenesis and progression of colorectal cancer (CRC). Expression profiling and CpG methylomics revealed that a forkhead-box transcriptional factor, FOXS1, is downregulated and methylated in CRC.

Objectives: To assess the biological functions and underlying mechanisms of FOXS1 in colorectal cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!