Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 are responsible for the hepatic uptake of organic anions. They share similar sequences and structures with 12 putative transmembrane domains (TMs). Their substrate specificities are very broad and overlap each other, whereas each transporter specifically recognizes certain substrates. Because the homology of the amino acid sequence in the latter part of OATP1B1 and OATP1B3 is relatively low, to determine which TMs in the latter part of OATP1B1 are important for its substrate recognition, we constructed several cell lines expressing chimeric transporters in which some TMs of OATP1B1 were substituted with those of OATP1B3, and we investigated the transport kinetics of estrone-3-sulfate (E-sul; a substrate preferentially accepted by OATP1B1) and estradiol-17beta-D-glucuronide (EG; a substrate accepted by both transporters). As the number of substituted TMs at the N terminus with those of OATP1B3 increased, the K(m) value of E-sul greatly increased and its uptake clearance decreased. The substitution of TM7 or TM9 of OATP1B1 with that of OATP1B3 (named 1B1-TM7 or 1B1-TM9) did not change the transport kinetics of EG, whereas the K(m) value of E-sul in 1B1-TM9 increased 7.4-fold. Conversely, the substitution of TM8 resulted in an 18-fold increase in the K(m) value of E-sul and abolished the transporter-mediated uptake of EG. These results suggest that TM8 in OATP1B1 is critical for the substrate recognition of both E-sul and EG and that TM9 is important for the recognition of E-sul, whereas it is interchangeable with that of OATP1B3 for EG transport.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.108.148411DOI Listing

Publication Analysis

Top Keywords

transport kinetics
12
transmembrane domains
8
organic anion
8
anion transporting
8
transporting polypeptide
8
kinetics estrone-3-sulfate
8
oatp1b1 oatp1b3
8
tms oatp1b1
8
substrate recognition
8
recognition e-sul
8

Similar Publications

Low molecular weight fucoidan (LMWF) has been proved to be more potent than its prototype, many degradation methods have been used to prepare LMWF. This study is conducted to further explore the biological activities of LMWF prepared by ultrasound based on anticoagulation, antioxidation, and inhibition of urate induced pyroptosis and reabsorption transporters overexpression in human renal tubular epithelial cells. Data revealed that ultrasound successfully degraded fucoidan to be LMWF, the product treated for no more than 2.

View Article and Find Full Text PDF

Experimental and kinetic modeling study of oxidative degradation of benzene and phenol in supercritical water.

J Environ Manage

January 2025

Shaanxi Key Laboratory of New Transportation Energy and Automotive Energy Saving, School of Energy and Electrical Engineering, Chang'an University, Xi'an, Shaanxi, 710064, PR China.

Benzene and phenol are representative aromatic compounds existing commonly in wastewater. The kinetics of oxidative degradation of benzene and phenol in supercritical water have been investigated in a flow reactor at 823 K and 250 atm, with the excess oxygen ratio ranging from 0.5 to 2.

View Article and Find Full Text PDF

Enhancing Carbon Monoxide Tolerance in Low-Temperature PEM Fuel Cells through Carbon Nitride Surface Modification.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Low-temperature proton exchange membrane fuel cells (PEMFCs) reuqire highly pure hydrogen gas due to their extreme sensitivity to carbon monoxide (CO) contamination, which poses a challenge for using cost-effective reformed hydrogen sources. To address this issue, we have developed a surface modification strategy by applying a 0.5-0.

View Article and Find Full Text PDF

Spatially dependent tissue distribution of thyroid hormones by plasma thyroid hormone binding proteins.

Pflugers Arch

January 2025

Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.

Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings.

View Article and Find Full Text PDF

Background: Mitochondrial bioenergetics are essential for cellular function, specifically the intricacies of the electron transport chain (ETC), with Complex IV playing a crucial role in unraveling the mechanisms governing energy production. Mathematical models offer a valuable approach to simulate these complex processes, providing insights into normal mitochondrial function and aberrations associated with various diseases, including neurodegenerative disorders. Our research focuses on introducing and refining a mathematical model, emphasizing Complex IV in the ETC, with objectives including incorporating mitochondrial activity modulation using inhibiting and uncoupling reagents, akin to oxygen consumption experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!