Thymidylate synthase (TS; 5,10-methylenetetrahydrofolate:dUMP C-methyltransferase, EC 2.1.1.45) is essential for the de novo synthesis of thymidylate, a precursor of DNA. Previous studies have shown that the cellular level of this protein is regulated at both the transcriptional and posttranscriptional levels. The regulation of human TS mRNA translation was studied in vitro with a rabbit reticulocyte lysate system. The addition of purified human recombinant TS protein to in vitro translation reactions inhibited translation of TS mRNA. This inhibition was specific in that recombinant TS protein had no effect on the in vitro translation of mRNA for human chromogranin A, human folate receptor, preplacental lactogen, or total yeast RNA. The inclusion of dUMP, 5-fluoro-dUMP, or 5,10-methylene-tetrahydrofolate in in vitro translation reactions completely relieved the inhibition of TS mRNA translation by TS protein. Gel retardation assays confirmed a specific interaction between TS protein and its corresponding mRNA but not with unrelated mRNAs, including human placenta, human beta-actin, and yeast tRNA. These studies suggest that translation of TS mRNA is controlled by its own protein end product, TS, in an autoregulatory manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC52634PMC
http://dx.doi.org/10.1073/pnas.88.20.8977DOI Listing

Publication Analysis

Top Keywords

thymidylate synthase
12
vitro translation
12
translation mrna
12
translation
8
mrna translation
8
recombinant protein
8
protein vitro
8
translation reactions
8
protein
6
human
6

Similar Publications

TYMS Enhances Colorectal Cell Antioxidant Capacity Via the KEAP1-NRF2 Pathway to Resist Ferroptosis.

J Cancer

January 2025

The Colorectal and Anal Surgery Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China.

Article Synopsis
  • Thymidylate synthase (TYMS) plays a crucial role in DNA synthesis and is found to be overexpressed in colorectal cancer (CRC) tissues, indicating a link to poor patient prognosis.
  • TYMS overexpression enhances CRC cell proliferation and increases cellular antioxidant capacity by downregulating KEAP1 and promoting NRF2 translocation into the nucleus, which upregulates antioxidant genes.
  • Inhibiting TYMS with 5-fluorouracil (5-FU) shows potential for drug synergism with erastin, suggesting a strategy to overcome TYMS-mediated resistance to ferroptosis in CRC treatment.
View Article and Find Full Text PDF

In silico bioprospecting of receptors for Oligoventin: An antimicrobial peptide isolated from spider eggs of Phoneutria nigriventer.

Colloids Surf B Biointerfaces

December 2024

Laboratory of Applied Toxicology, Center of Toxins, Immune-Response and Cell Signaling - CeT-ICS/CEPID, Butantan Institute São Paulo, São Paulo, SP CEP 05503-900, Brazil; Postgraduate Program Interunits in Biotechnology, USP/IPT/IBU, São Paulo, SP, Brazil. Electronic address:

Background: Irresponsible and wholesale use of antimicrobial agents is the principal cause of the emergence of strains of resistant microorganisms to traditional drugs. Oligoventin is a neutral peptide isolated from spider eggs of Phoneutria nigriventer, with antimicrobial activity against Gram-positive, Gram-negative, and yeast organisms. However, the molecular target and pathways of antimicrobial activity are still unknown.

View Article and Find Full Text PDF

An efficient synthesis of a series of uracil analogous was performed to obtain new potential anticancer agents. The cytotoxic effect of the synthesized derivatives was assessed in vitro against three cancer cell lines, namely hepatic cancer (HepG-2), colon cancer (HCT-116), and breast cancer (MCF-7). Among the tested compounds, 5, 11 and 15 stood as potent uracil derivatives with pan cytotoxicity against the 3 cell lines out-performing the reference compound 5-FU.

View Article and Find Full Text PDF

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains a significant global health challenge due to the emergence of drug-resistant strains. This study targets Flavin-dependent thymidylate synthase (ThyX), an essential enzyme in the thymidylate biosynthesis pathway crucial for bacterial DNA replication. We utilized advanced computational techniques, including molecular dynamics (MD) simulations and interaction energy analysis, to examine the binding interactions and stability of various thiazole-thiadiazole compounds with Mtb ThyX.

View Article and Find Full Text PDF

In the present work, we report the synthesis of TiO nanoparticles by hydrothermal method using titanium isopropoxide. The synthesized TiO nanoparticles were investigated by Powder X-ray diffraction, FE-SEM with EDX, Photoluminescence, UV-Visible absorption and Fluorescence emission spectroscopy. Fluorescence intensity and absorption values of 4-[5-(2,5-Dimethyl-pyrrol-1-yl)-[1,3,4]thiadiazol-2-ylsulfanylmethyl]-6-methoxy-chromen-2-one (DTYMC) molecule decreases with adding the concentration of TiO nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!