An amphiphilic polymer resin-dispersion of nanoparticles of palladium was designed and prepared with a view toward use for catalysis in water. The amphiphilic polystyrene-poly(ethylene glycol) (PS-PEG) resin-dispersion of nanoparticles of palladium exhibited high catalytic performance in the hydrodechlorination of chloroarenes under aqueous conditions. The amphiphilic resin-supported nanopalladium and nanoplatinum particles also catalyzed aerobic oxidation of various alcohols including nonactivated aliphatic and alicyclic alcohols, which is one of the most fundamental and important yet immature processes in organic chemistry, in water under an atmospheric pressure of oxygen gas to form aldehydes, ketones, and carboxylic acids to meet green chemical requirements. Viologen polymer-supported nanopalladium catalyst realized alpha-alkylation of ketones with primary alcohols as the alkylating agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.20165 | DOI Listing |
Chem Rec
April 2009
Institute for Molecular Science, Higashiyama 5-1, Myodaiji, Okazaki 444-8787, Japan.
An amphiphilic polymer resin-dispersion of nanoparticles of palladium was designed and prepared with a view toward use for catalysis in water. The amphiphilic polystyrene-poly(ethylene glycol) (PS-PEG) resin-dispersion of nanoparticles of palladium exhibited high catalytic performance in the hydrodechlorination of chloroarenes under aqueous conditions. The amphiphilic resin-supported nanopalladium and nanoplatinum particles also catalyzed aerobic oxidation of various alcohols including nonactivated aliphatic and alicyclic alcohols, which is one of the most fundamental and important yet immature processes in organic chemistry, in water under an atmospheric pressure of oxygen gas to form aldehydes, ketones, and carboxylic acids to meet green chemical requirements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!