Advanced materials for environmental catalysts.

Chem Rec

Department of Applied Chemistry, Faculty of Engineering, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.

Published: April 2009

AI Article Synopsis

Article Abstract

Recent advances in the synthesis and characterization of materials for environmental catalysts are reported in this paper. Highly advanced environmental catalysts for decomposition of volatile organic compounds and nitrogen oxides were artificially designed based on a concept usually employed in the fields of solid-state chemistry and solid-state ionics. Catalytically active materials for complete ethylene oxidation were prepared by a citrate sol-gel method as a key process to obtain CeO(2)-ZrO(2)-Bi(2)O(3) solid solutions. On the other hand, direct NO decomposition catalysts were designed and prepared focusing on the open spaces and oxide anion vacancies in the crystal lattice. Evaluation of the materials as environmental catalysts demonstrated significant advantages over the conventional ones. The design strategy, synthetic method, and structural features of these concerto catalysts are addressed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.20167DOI Listing

Publication Analysis

Top Keywords

environmental catalysts
16
materials environmental
12
catalysts
6
advanced materials
4
environmental
4
catalysts advances
4
advances synthesis
4
synthesis characterization
4
characterization materials
4
catalysts reported
4

Similar Publications

Carbon-supported Fe single atom nanozymes with long-lasting ROS generation and high NIR photothermal performance for synergistic cancer therapy.

J Colloid Interface Sci

April 2025

High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.

View Article and Find Full Text PDF

Lignin-coordinated niobium-based catalyst for the efficient conversion of industrial lignin in choline chloride-lactic acid integrated with ethanol deep eutectic solvent.

Int J Biol Macromol

January 2025

Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:

Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.

View Article and Find Full Text PDF

The efficient degradation of SAs is a significant challenge for the treatment of wastewater. To address this, the FeS@BC was prepared by calcining a mixture of pyrite and biomass, and used to activate peroxydisulfate (PDS) to degrade sulfadiazine (SDZ). The effect of carbon sources (wheat straw, rice husk, and corn cob) on catalytic activity of FeS@BC were investigated by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), total Fe dissolution and free radical quantification.

View Article and Find Full Text PDF

Environmentally-friendly rGO/Mn nanocomposites for efficient removal of tetracycline and its degradation pathway.

J Environ Manage

January 2025

Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China. Electronic address:

Since the widespread use of antibiotics, the residues of antibiotics have frequently been detected in various water sources, making antibiotic pollution an urgent environmental issue. In this paper, one-step green synthetic reduced graphene/manganese nanoparticles (rGO/Mn NPs) composites have been utilized as a novel environmentally-friendly catalyst for tetracycline (TC) removal. The results demonstrated that rGO/Mn NPs exhibit excellent adsorption performance for TC, and can efficiently activate sodium persulfate (PDS) to oxidize and degrade TC.

View Article and Find Full Text PDF

Suppression of carbon footprint through the CO-assisted pyrolysis of livestock waste.

Sci Total Environ

January 2025

Department of Earth Resources & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:

Concentrated animal feeding operation facility in modern livestock industry is pointed out as a point site causing environmental pollution due to massive generation of manure. While livestock manure is conventionally treated through biological processes, composting and anaerobic digestion, these practices pose difficulties in achieving efficient carbon utilization. To address this, this study suggests a pyrolytic valorization of livestock manure, with a focus on enhancing syngas production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!