p21-activated kinase 2 (PAK-2) seems to be a regulatory switch between cell survival and cell death signaling. We have shown previously that activation of full-length PAK-2 by Rac or Cdc42 stimulates cell survival, whereas caspase activation of PAK-2 to the proapoptotic PAK-2p34 fragment is involved in the cell death response. In this study, we present a role of elevated activity of full-length PAK-2 in anchorage-independent growth and resistance to anticancer drug-induced apoptosis of cancer cells. Hs578T human breast cancer cells that have low levels of PAK-2 activity were more sensitive to anticancer drug-induced apoptosis and showed higher levels of caspase activation of PAK-2 than MDA-MB435 and MCF-7 human breast cancer cells that have high levels of PAK-2 activity. To examine the role of elevated PAK-2 activity in breast cancer, we have introduced a conditionally active PAK-2 into Hs578T human breast cells. Conditional activation of PAK-2 causes loss of contact inhibition and anchorage-independent growth of Hs578T cells. Furthermore, conditional activation of PAK-2 suppresses activation of caspase 3, caspase activation of PAK-2, and apoptosis of Hs578T cells in response to the anticancer drug cisplatin. Our data suggest a novel mechanism by which full-length PAK-2 activity controls the apoptotic response by regulating levels of activated caspase 3 and thereby its own cleavage to the proapoptotic PAK-2p34 fragment. As a result, elevated PAK-2 activity interrupts the apoptotic response and thereby causes anchorage-independent survival and growth and resistance to anticancer drug-induced apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2647731PMC
http://dx.doi.org/10.1593/neo.81446DOI Listing

Publication Analysis

Top Keywords

activation pak-2
20
pak-2 activity
20
anticancer drug-induced
16
pak-2
14
anchorage-independent growth
12
growth resistance
12
resistance anticancer
12
cell death
12
full-length pak-2
12
caspase activation
12

Similar Publications

Up-regulation of the PI3K/AKT and RHO/RAC/PAK signalling pathways in CHK1 inhibitor resistant Eµ-Myc lymphoma cells.

Biochem J

October 2022

Newcastle University Biosciences Institute, Wolfson Childhood Cancer Research Centre, Newcastle University, Level 6, Herschel Building, Brewery Lane, Newcastle upon Tyne NE1 7RU, U.K.

The development of resistance and the activation of bypass pathway signalling represents a major problem for the clinical application of protein kinase inhibitors. While investigating the effect of either a c-Rel deletion or RelAT505A phosphosite knockin on the Eµ-Myc mouse model of B-cell lymphoma, we discovered that both NF-κB subunit mutations resulted in CHK1 inhibitor resistance, arising from either loss or alteration of CHK1 activity, respectively. However, since Eµ-Myc lymphomas depend on CHK1 activity to cope with high levels of DNA replication stress and consequent genomic instability, it was not clear how these mutant NF-κB subunit lymphomas were able to survive.

View Article and Find Full Text PDF

Introduction: Dysfunction of placental development is involved in early pregnancy loss. Senescent changes have been seen in missed miscarriage, one type of pregnancy loss. Extracellular vesicles (EVs) have been widely implicated in the pathogenesis of diseases.

View Article and Find Full Text PDF

Background/aim: Prostate cancer (PCa) is the second-most commonly occurring cancer among men, worldwide. Although the mechanisms associated with the progression of castration-resistant prostate cancer (CRPC) have been widely studied, the mechanism associated with more distant metastases from the bone remains unknown. This study aimed to characterize potential pathogenic kinases associated with highly metastatic PCa, that may regulate phosphorylation in extensively involved and diverse signaling pathways that are associated with the development of various cancers.

View Article and Find Full Text PDF

Insulin-stimulated glucose uptake partly relies on p21-activated kinase (PAK)2, but not PAK1, in mouse skeletal muscle.

J Physiol

December 2020

Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.

Key Points: Muscle-specific genetic ablation of p21-activated kinase (PAK)2, but not whole-body PAK1 knockout, impairs glucose tolerance in mice. Insulin-stimulated glucose uptake partly relies on PAK2 in glycolytic extensor digitorum longus muscle By contrast to previous reports, PAK1 is dispensable for insulin-stimulated glucose uptake in mouse muscle.

Abstract: The group I p21-activated kinase (PAK) isoforms PAK1 and PAK2 are activated in response to insulin in skeletal muscle and PAK1/2 signalling is impaired in insulin-resistant mouse and human skeletal muscle.

View Article and Find Full Text PDF

Tumor angiogenesis allows tumor cells to grow and migrate toward the bloodstream and initiate metastasis. The interactions of vascular endothelial growth factors (VEGF) A and B, as the important regulating factors for blood vessel growth, with VEGFR1 and VEGFR2 trigger angiogenesis process. Thus, preventing these interactions led to the effective blockade of VEGF/VEGFRs signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!