The protein family of kinesins contains processive motor proteins that move stepwise along microtubules. This mechanism requires the precise coupling of the catalytic steps in the two heads, and their precise mechanical coordination. Here we show that these functionalities can be uncoupled in chimera of processive and non-processive kinesins. A chimera with the motor domain of Kinesin-1 and the dimerization domain of a non-processive Kinesin-3 motor behaves qualitatively as conventional kinesin and moves processively in TIRF and bead motility assays, suggesting that spatial proximity of two Kinein-1 motor domains is sufficient for processive behavior. In the reverse chimera, the non-processive motor domains are unable to step along microtubules, despite the presence of the Kinesin-1 neck coiled coil. Still, ATP-binding to one head of these chimera induces ADP-release from the partner head, a characteristic feature of alternating site catalysis. These results show that processive movement of kinesin dimers requires elements in the motor head that respond to ADP-release and induce stepping, in addition to a proper spacing of the motor heads via the neck coiled coil.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2644789 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0004612 | PLOS |
Ann Indian Acad Neurol
January 2025
Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
Background And Objectives: Pain is an important non-motor symptom in Parkinson's disease (PD) and is often under-recognized. Pain is also a symptom frequently reported by non-PD elderly subjects. The King's Parkinson's Disease Pain Scale (KPPS) is a valid tool to characterize and quantify pain in PD and has been translated into several languages.
View Article and Find Full Text PDFPediatr Res
January 2025
Department of Physiology, University of Helsinki, Helsinki, Finland.
Background: To study how early gross motor development links to concurrent prelinguistic and social development.
Methods: We recruited a population-based longitudinal sample of 107 infants between 6 and 21 months of age. Gross motor performance was quantified using novel wearable technology for at-home recordings of infants' spontaneous activity.
Transl Psychiatry
January 2025
Department of Psychology, Goldsmiths University of London, London, UK.
Bipolar disorder (BD) involves altered reward processing and decision-making, with inconsistencies across studies. Here, we integrated hierarchical Bayesian modelling with magnetoencephalography (MEG) to characterise maladaptive belief updating in this condition. First, we determined if previously reported increased learning rates in BD stem from a heightened expectation of environmental changes.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.
Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.
View Article and Find Full Text PDFSci Rep
January 2025
Changchun Automobile Economic & Technological Development Zone Employment Service Bureau, Jilin City, China.
The permanent magnet synchronous motor control system is characterized by its nonlinear and strongly coupled complexity, presenting significant challenges for control performance optimization. To address these challenges, a Fuzzy adaptive fractional order [Formula: see text] control strategy based on torque observation compensation is proposed. The parameters of the fractional order [Formula: see text] controller are optimized real time using fuzzy logic reasoning, in order to enhance the speed of parameters tuning, a graphical design method of the fractional order [Formula: see text] controller parameters based on frequency domain performance indicators is proposed to obtain the initial values of the fuzzy adaptive fractional order [Formula: see text] controller parameters graphically and intuitively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!