Given the growing interest in porcine islets as model tissue for studying the pathogenesis of human diabetes mellitus and its treatment by transplantation, we investigated stimulus-exocytosis coupling in single porcine beta-cells using patch clamp electrophysiology, Ca2+ imaging, capacitance tracking and amperometry. We establish that porcine beta-cells display several features prominently seen in beta-cells from human islets of Langerhans. These include: (i) wide heterogeneity of electrical responsiveness to glucose; (ii) dependence of action potential activity on voltage-dependent Na(+) as well as high voltage activated Ca2+ current; (iii) heterogeneity of time course of depolarization-evoked insulin granule exocytosis; and (iv) the dependence of vigorous single cell electrical activity and insulin granule exocytosis on the presence of agents that enhance cytosolic cAMP concentration. These findings promote the usefulness of porcine beta-cells as a model for studying beta-cell function in large mammals, including humans, as well as an appropriate source of tissue for xenotransplantation.

Download full-text PDF

Source
http://dx.doi.org/10.4161/chan.3.2.7865DOI Listing

Publication Analysis

Top Keywords

porcine beta-cells
12
stimulus-exocytosis coupling
8
porcine islets
8
islets langerhans
8
insulin granule
8
granule exocytosis
8
beta-cells
5
porcine
5
ion channels
4
channels underlying
4

Similar Publications

Enhanced Insulin Production From Porcine Islets: More Insulin, Less Islets.

Transpl Int

January 2025

Pôle de Chirurgie Expérimentale et Transplantation, Université Catholique de Louvain, Brussels, Belgium.

Clinical pancreatic islet xenotransplantation will most probably rely on genetically modified pigs as donors. Several lines of transgenic pigs carrying one and more often, multiple modifications already exist. The vast majority of these modifications aim to mitigate the host immune response by suppressing major xeno-antigens, or expressing immunomodulatory molecules that act locally at the graft site.

View Article and Find Full Text PDF

Background: Intraportal pancreatic islet transplantation is a treatment option for patients with severe beta cell failure and unstable glycemic control. However, this procedure is associated with loss of beta cells after intrahepatic transplantation. Islet delivery devices (IDDs) implanted at extrahepatic sites may support engraftment and improve survival of pancreatic islets.

View Article and Find Full Text PDF
Article Synopsis
  • * It explores the compatibility of porcine islets with human glucose metabolism, their potential as a reliable source of beta cells, and the immunological challenges faced in xenotransplantation.
  • * The discussion includes regulatory and ethical considerations surrounding the use of pig islets, emphasizing the importance of ongoing research and dialogue to address obstacles and promote their integration into T1D therapies.*
View Article and Find Full Text PDF

To be clinically efficient, beta cell replacement therapies such as pig islet xenotransplantation must ensure sufficient insulin secretion from grafted islets. While protection from host immune reaction is essential for islet engraftment and their subsequent functioning, intrinsic physiological properties of used cells are also a key factor. We have previously shown that islets with adenoviral-mediated expression of a dipeptidyl peptidase-resistant form of glucagon-like-peptide-1 (GLP-1) and a constitutively activated form of type 3 muscarinic receptor (M3R) in their beta cells have greatly improved insulin secretory response to glucose stimulation that is otherwise 4 to 10 times lower than human islets.

View Article and Find Full Text PDF

A capsule-based scaffold incorporating decellularized extracellular matrix and curcumin for islet beta cell therapy in type 1 diabetes mellitus.

Biofabrication

September 2024

State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, People's Republic of China.

The transplantation of islet beta cells offers an alternative to heterotopic islet transplantation for treating type 1 diabetes mellitus (T1DM). However, the use of systemic immunosuppressive drugs in islet transplantation poses significant risks to the body. To address this issue, we constructed an encapsulated hybrid scaffold loaded with islet beta cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!