Fifteen food powders were coated on aluminum targets at 0, +25, and -25 kV using corona electrostatic coating at 20% to 80% relative humidity (RH). The effect of RH on 3 losses, that is, targeting loss, coating loss, and transportation loss, which contribute to coating efficiency, was studied. RH had no effect on targeting loss in either nonelectrostatic or electrostatic coating. In nonelectrostatic coating, increasing RH increased coating loss for powders with particle size > or =297 microm, but had no effect on powders < or =227 microm. Large powders were free-flowing and clumped with increasing RH, and then rolled off the targets, resulting in high coating loss. RH had no effect on nonelectrostatic transportation loss for all powders, except for very high absolute humidity when capillary forces dominated. Electrostatic charging efficiency and powder resistivity decreased with increasing RH. Electrostatic coating loss for salts increased with increasing RH. At high RH, powder resistivity decreases, increasing the charge decay rate, which decreases electrostatic adhesion. Electrostatic coating loss for powders other than salts, whose resistivities are much higher than salts, was not affected by RH until 80% RH. Electrostatic transportation loss for powders other than proteins was not affected by RH. There was no significant difference between positive and negative electrostatic transfer efficiency and adhesion, except for transfer efficiency of soy protein and pork gelatin, whose high positive tribocharging values cause higher positive electrostatic transfer efficiency. A 20% to 60% RH is recommended for both nonelectrostatic and electrostatic coating.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1750-3841.2008.00812.x | DOI Listing |
J Colloid Interface Sci
January 2025
Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China. Electronic address:
Developing new conductive primers to ensure electrostatic spraying is crucial in response to the call for lightweight production of new energy vehicles. We report a stabilized material, Fe-T/G, of Fe-doped TiO composite graphene synthesized by a simple hydrothermal and electrostatic self-assembly method. The resistivity decreases from 0.
View Article and Find Full Text PDFJ Control Release
January 2025
Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy; BioNanoMedicine Center NANOMIB, Università degli Studi di Milano-Bicocca, Italy. Electronic address:
Graphene oxide (GO) is an amphiphilic and versatile graphene-based nanomaterial that is extremely promising for targeted drug delivery, which aims to administer drugs in a spatially and temporally controlled manner. A typical GO nanocarrier features a polyethylene glycol coating and conjugation to an active targeting ligand. However, it is challenging to accurately model GO dots, because of their intrinsically complex and not unique structure.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Nano Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea.
The efficient hydrogenation of 1-butene is an industrially significant reaction for producing fuels and value-added chemicals. However, achieving high catalytic efficiency and stability remains challenging, particularly for cost-effective materials, such as Ni. In this study, we developed a porous Ni-coated Ni foam catalyst by electrostatic spray deposition to address these challenges.
View Article and Find Full Text PDFSmall
January 2025
Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.
Although Silicon monoxide (SiO) is regarded as the most promising next-generation anode material, the large volume expansion, poor conductivity, and low initial Coulombic efficiency (ICE) severely hamper its commercialization application. Designing a multilayer conductive skeleton combined with advanced prelithiation technology is considered an effective approach to address these problems. Herein, a reliable strategy is proposed that utilizes MXene and carbon nanotube (CNT) as dual-conductive skeletons to encapsulate SiO through simple electrostatic interaction for high-performance anodes in LIBs, while also performing chemical prelithiation.
View Article and Find Full Text PDFRegen Biomater
December 2024
Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, PR China.
Periodontitis, a widespread inflammatory disease, is the major cause of tooth loss in adults. While mechanical periodontal therapy benefits the periodontal disease treatment, adjunctive periodontal therapy is also necessary. Topically applied anti-inflammatory agents have gained considerable attention in periodontitis therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!