Effect of relative humidity on coating efficiency in nonelectrostatic and electrostatic coating.

J Food Sci

Dept. of Food Science and Technology, The Ohio State Univ., 2015 Fyffe Road, Columbus, OH 43210, USA.

Published: August 2008

Fifteen food powders were coated on aluminum targets at 0, +25, and -25 kV using corona electrostatic coating at 20% to 80% relative humidity (RH). The effect of RH on 3 losses, that is, targeting loss, coating loss, and transportation loss, which contribute to coating efficiency, was studied. RH had no effect on targeting loss in either nonelectrostatic or electrostatic coating. In nonelectrostatic coating, increasing RH increased coating loss for powders with particle size > or =297 microm, but had no effect on powders < or =227 microm. Large powders were free-flowing and clumped with increasing RH, and then rolled off the targets, resulting in high coating loss. RH had no effect on nonelectrostatic transportation loss for all powders, except for very high absolute humidity when capillary forces dominated. Electrostatic charging efficiency and powder resistivity decreased with increasing RH. Electrostatic coating loss for salts increased with increasing RH. At high RH, powder resistivity decreases, increasing the charge decay rate, which decreases electrostatic adhesion. Electrostatic coating loss for powders other than salts, whose resistivities are much higher than salts, was not affected by RH until 80% RH. Electrostatic transportation loss for powders other than proteins was not affected by RH. There was no significant difference between positive and negative electrostatic transfer efficiency and adhesion, except for transfer efficiency of soy protein and pork gelatin, whose high positive tribocharging values cause higher positive electrostatic transfer efficiency. A 20% to 60% RH is recommended for both nonelectrostatic and electrostatic coating.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1750-3841.2008.00812.xDOI Listing

Publication Analysis

Top Keywords

electrostatic coating
24
coating loss
20
loss powders
16
coating
12
nonelectrostatic electrostatic
12
transportation loss
12
transfer efficiency
12
electrostatic
11
loss
10
relative humidity
8

Similar Publications

Fe diaspora titanium dioxide and graphene: A study of conductive powder materials and coating applications.

J Colloid Interface Sci

January 2025

Liaoning Key Laboratory for Chemical Clean Production, Liaoning Key Laboratory for Surface Functionalization of Titanium Dioxide Powder, Institute of Ocean Research, Institute Environmental Research, College of Chemistry and Material Engineering, Bohai University, Jinzhou 121013 Liaoning, China. Electronic address:

Developing new conductive primers to ensure electrostatic spraying is crucial in response to the call for lightweight production of new energy vehicles. We report a stabilized material, Fe-T/G, of Fe-doped TiO composite graphene synthesized by a simple hydrothermal and electrostatic self-assembly method. The resistivity decreases from 0.

View Article and Find Full Text PDF

Unveiling the drug delivery mechanism of graphene oxide dots at the atomic scale.

J Control Release

January 2025

Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy; BioNanoMedicine Center NANOMIB, Università degli Studi di Milano-Bicocca, Italy. Electronic address:

Graphene oxide (GO) is an amphiphilic and versatile graphene-based nanomaterial that is extremely promising for targeted drug delivery, which aims to administer drugs in a spatially and temporally controlled manner. A typical GO nanocarrier features a polyethylene glycol coating and conjugation to an active targeting ligand. However, it is challenging to accurately model GO dots, because of their intrinsically complex and not unique structure.

View Article and Find Full Text PDF

The efficient hydrogenation of 1-butene is an industrially significant reaction for producing fuels and value-added chemicals. However, achieving high catalytic efficiency and stability remains challenging, particularly for cost-effective materials, such as Ni. In this study, we developed a porous Ni-coated Ni foam catalyst by electrostatic spray deposition to address these challenges.

View Article and Find Full Text PDF

Commercial SiO Encapsulated in Hybrid Bilayer Conductive Skeleton as Stable Anode Coupling Chemical Prelithiation for Lithium-Ion Batteries.

Small

January 2025

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.

Although Silicon monoxide (SiO) is regarded as the most promising next-generation anode material, the large volume expansion, poor conductivity, and low initial Coulombic efficiency (ICE) severely hamper its commercialization application. Designing a multilayer conductive skeleton combined with advanced prelithiation technology is considered an effective approach to address these problems. Herein, a reliable strategy is proposed that utilizes MXene and carbon nanotube (CNT) as dual-conductive skeletons to encapsulate SiO through simple electrostatic interaction for high-performance anodes in LIBs, while also performing chemical prelithiation.

View Article and Find Full Text PDF

Periodontitis, a widespread inflammatory disease, is the major cause of tooth loss in adults. While mechanical periodontal therapy benefits the periodontal disease treatment, adjunctive periodontal therapy is also necessary. Topically applied anti-inflammatory agents have gained considerable attention in periodontitis therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!