Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Signal transmission through Creutz-Taube complexes [(NH(3))(5)Ru-BL-Ru(NH(3))(5)](5+)(BL = pyrazine (py), 4,4'-bipyridine (bpy)), which are simplified models of the molecular quantum-dot cellular automata (molecular QCA), is discussed both statically and dynamically with a view to designing useful molecular QCA. In the static treatment, the difference between stationary states before and after the switch of the input to the molecular QCA is discussed. In the dynamic treatment, time-evolution of electronic structure after the moment of the switch is simulated, and a simple method for the simulation is also proposed. Geometric and electronic structures are obtained by density functional theory (UB3LYP) and Hartree-Fock (UHF) calculations, and discussions are based on the Mulliken charge. It is found that signal amplitude (A) is strongly dependent on the position and charge of the input to the molecular QCA, but signal period (T) is almost independent of them. These results are explained from molecular orbitals and orbital energies, and a set of large A (large overlap between orbitals) and small T (large energy gap) generally leads to a prompt signal transmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b816103h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!