AI Article Synopsis

  • The study investigates how varying folate levels affect drug resistance in different cancer cell types.
  • Increased expression of drug transporters MRP3 and MRP4 was observed in low folate (LF) cancer cells, particularly in KB and OVCAR-3 cells.
  • The research suggests that low folate conditions may enhance BCRP expression in cancer cells, indicating that folate supplementation could potentially boost the effectiveness of chemotherapy by lowering this resistance.

Article Abstract

As cellular folate levels seem to have a different effect on cancer cells from different origins, we extended our initial study to a broader panel of cancer cells. BCRP and MRP1-5 expression was determined in KB, OVCAR-3, IGROV-1, ZR75-1/R/MTX, SCC-11B, SCC-22B, and WiDr either grown in standard RPMI 1640 containing 2.3 micromol/L supraphysiologic concentration of folic acid [high folate (HF)] or adapted to more physiologic concentrations [1-5 nmol/L folic acid or leucovorin; low folate (LF)]. Compared with the HF counterparts, KB LF cells displayed 16.1-fold increased MRP3 and OVCAR-3 LF cells showed 4.8-fold increased MRP4 mRNA levels along with increased MRP3 and MRP4 protein expression, respectively. A marked increase on BCRP protein and mRNA expression was observed in WiDr LF cells. These cells acquired approximately 2-fold resistance to mitoxantrone compared with the HF cell line, a phenotype that could be reverted by the BCRP inhibitor Ko143. Of note, WiDr cells expressed BCRP in the intracellular compartment, similarly to what we have described for Caco-2 cells. Our results provide further evidence for an important role of cellular folate status in the modulation of the expression of multidrug resistance transporters in cancer cells. We show that up-regulation of intracellularly localized BCRP in response to adaptation to LF conditions may be a common feature within a panel of colon cancer cell lines. Under these circumstances, folate supplementation might improve the efficacy of chemotherapeutic drugs by decreasing BCRP expression.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1535-7163.MCT-08-0768DOI Listing

Publication Analysis

Top Keywords

cellular folate
12
cancer cells
12
cells
9
folate status
8
transporters cancer
8
cancer cell
8
cell lines
8
folic acid
8
increased mrp3
8
widr cells
8

Similar Publications

Ovarian cancer (OC) is a highly malignant gynecological tumor, and its effective treatment is frequently impeded by drug resistance and recurrent tumor growth. The reprogramming of glutamine metabolism in ovarian cancer is closely associated with tumor progression and the immunosuppressive tumor microenvironment. Recently, targeting metabolic reprogramming has emerged as a promising approach for cancer therapy.

View Article and Find Full Text PDF

Methylmercury-induced visual deficits involve loss of GABAergic cells in the zebrafish embryo retina.

Sci Total Environ

January 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China. Electronic address:

Methylmercury (MeHg) is a neurotoxicant with adverse effects on visual systems from fish to man. Clinical signs of visual deficits including color-vision alterations, visual field constriction and blindness have been frequently identified in patients and affected animals following acute and chronic exposure to MeHg. However, it is still unclear whether MeHg causes developmental defects in the eye.

View Article and Find Full Text PDF

Moderate levels of folic acid benefit outcomes for cilia based neural tube defects.

Dev Biol

January 2025

Department of Molecular, Cellular and Development Biology, University of Colorado, Boulder, CO 80309. Electronic address:

Folic acid (FA) supplementation is a potent tool to reduce devastating birth defects known as neural tube defects (NTDs). Though effective, questions remain how FA achieves its protective effect and which gene mutations are sensitive to folic acid levels. We explore the relationship between FA dosage and NTD rates using NTD mouse models.

View Article and Find Full Text PDF

Inhibition of METTL14 overcomes CDK4/6 inhibitor resistance driven by METTL14-m6A-E2F1-axis in ERα-positive breast cancer.

J Nanobiotechnology

January 2025

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, 710032, Xi'an, People's Republic of China.

CDK4/6i, the first-line drug for treating ERα-positive breast cancer, significantly improves clinical outcomes. However, CDK4/6i resistance often develops and remains a major hurdle, and the underlying mechanisms remain challenging to fully investigate. Here, we used Genome-wide CRISPR/Cas9 library screening combined with single-cell sequencing to screen for molecules mediating CDK4/6i resistance and identified METTL14 as a determinant of CDK4/6i sensitivity.

View Article and Find Full Text PDF

Long afterglow hybrid nanoplatform for integrated NIR-Ⅱ imaging diagnosis and triple-synergistic treatment of choroidal melanoma.

Talanta

December 2024

The Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, PR China. Electronic address:

The key to the treatment of choroidal melanoma (CM) is to improve diagnostic efficiency and find a high-performance treatment to replace the traditional treatment of radiotherapy and enucleation. In this paper, for the first time, long afterglow luminescence material was applied to the integrated diagnosis and treatment of eyes, with its unique advantages in photoluminescence and afterglow luminescence to solve the bottleneck problem of real-time irradiation required for photothermal and photodynamic therapy (PTT and PDT). Based on the excellent photoluminescence and afterglow properties of ZnGaGeO:CrYbEr (ZGGO) nanoparticles, a nanoplatform ZGGO@Au@UiO-66@ZnPc:Dox-FA (GAUZD-FA) for NIR-Ⅱ imaging and triple-synergistic therapy (PTT, PDT and sustained-release drug) was constructed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!