Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objectives: The secreted Mycobacterium tuberculosis protein tyrosine phosphatase (MptpB) is a virulence factor for M. tuberculosis and contributes to its survival within host macrophages. The aim of this study was to identify potent selective inhibitors of MptpB and to determine the efficacy of these compounds in mycobacterium-infected macrophages.
Methods: The inhibitory effect of a small library of compounds on MptpB was first examined in vitro. The efficacy of these compounds was further examined in mycobacterium-infected macrophages.
Results: We have identified a new family of double-site isoxazole-based compounds that are potent selective inhibitors of MptpB. Importantly, the inhibitors substantially reduce mycobacterial survival in infected macrophages. In contrast with current anti-tubercular drugs, these MptpB inhibitors do not have bactericidal action but rather, severely impair mycobacterial growth within macrophages. Docking analysis suggests a double-site binding mechanism of inhibition with the isoxazole head in the active site and a salicylate group in a secondary binding pocket that is a unique structural feature of MptpB.
Conclusions: These results provide the first evidence that inhibition of phosphatases can be exploited against mycobacterial infections. The cell activity of the inhibitors together with the lack of MptpB human orthologues suggests a strong potential for these compounds to be developed as drug candidates against tuberculosis and promises a new therapeutic strategy to tackle clearance and reduce the persistence of M. tuberculosis infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jac/dkp031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!