The synthesis of 2-substituted oxazoles is achieved via nickel-catalyzed cross-coupling reaction of 2-methylthio-oxazole and various organozinc reagents. An extension of this method is demonstrated with a chemoselective, one-pot synthesis of unsymmetrical 2,5-disubstituted oxazoles. This synthesis of 2- and 2,5-substituted oxazoles using this method provides great advantages over previous methods for these compounds and is highly complementary to current cyclodehydration strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol900260g | DOI Listing |
Org Lett
January 2025
Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, Liaoning, People's Republic of China.
A straightforward and efficient nickel-catalyzed cyclization/carbonylation transformation of -allylbromoacetamides toward the synthesis of 2-pyrrolidinone derivatives has been developed with arylboronic acids as the reaction partner. This transformation proceeds through a sequential single-electron-transfer pathway via 5-- cyclization and carbonyl insertion steps, furnishing a variety of 2-pyrrolidinone derivatives in good yields. Various useful functional groups were well tolerated.
View Article and Find Full Text PDFACS Catal
January 2025
Fakultät für Chemie und Pharmazie, Universität Regensburg, Regensburg 93040, Germany.
Transition metal catalysis is crucial for the synthesis of complex molecules, with ligands and bases playing a pivotal role in optimizing cross-coupling reactions. Despite advancements in ligand design and base selection, achieving effective synergy between these components remains challenging. We present here a general approach to nickel-catalyzed photoredox reactions employing -butylamine as a cost-effective bifunctional additive, acting as the base and ligand.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.
Quaternary carbon centers are widespread structural motifs, thus representing extensive interest in organic synthesis. We describe here an efficient nickel-catalyzed intermolecular, -selective arylation of minimally functionalized alkenes with stable organoborons, affording a broad range of cyclic or acyclic quaternary carbon centers under mild conditions. The utilization of the diimine ligand is critical for high reactivity and chemoselectivity.
View Article and Find Full Text PDFGreen Chem
January 2025
Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
The development of sustainable synthetic methods for converting alcohols to amines is of great interest due to their widespread use in pharmaceuticals and fine chemicals. In this work, we present an electrochemical approach by using green electrons for the selective oxidation of benzyl alcohol to benzaldehyde using a NiOOH catalyst, followed by its reductive amination to form benzyl--butylamine. The number of Ni monolayer equivalents on the catalyst was found to significantly influence selectivity, with 2 monolayers achieving up to 90% faradaic efficiency (FE) for benzaldehyde in NaOH, while 10 monolayers performed best in a -butylamine solution (pH 11), yielding 100% FE for benzaldehyde.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
The difluoromethyl group is a crucial fluorinated moiety with distinctive biological properties, and the synthesis of chiral CF₂H-containing analogs has been recognized as a powerful strategy in drug design. To date, the most established method for accessing enantioenriched difluoromethyl compounds involves the enantioselective functionalization of nucleophilic and electrophilic CF₂H synthons. However, this approach is limited by lower reactivity and reduced enantioselectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!