The irradiation of polymer surfaces with ion beams leads to pronounced chemical and physical modifications when the ions are scattered at the atoms in the polymer chain. In this way, different products of decomposition occur. Here we show that by changing the ion fluence and the mass of the ion the local mechanical properties as Young's modulus of a polystyrene surface layer can be tailored. By annealing prestretched irradiated PS near the glass transition, surface rippling occurs in the irradiated areas only, which can be described with an elastic model. The moduli obtained from rippling periodicities and elastic model assumptions are in the range between 8 and 800 MPa at the glass transition and characterize the irradiated PS as rubberlike. From these values the network density and the molar mass of entanglement are quantified. The obtained network density equals the density of hydrogen vacancies generated through the scattered ions, as confirmed by simulations of the atomic scattering and displacement processes. The obtained molar mass of entanglement reveals that the PS locally was densely cross-linked. Our results show that even for nondiscrete layered polymer systems relevant polymer parameters can be derived from the well-known surface rippling without the need for costly chemical analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la802363v | DOI Listing |
Int J Biol Macromol
January 2025
Department of Biotechnological Genetics, Institute of Science, Trakya University, Edirne, Turkey.
Fish gelatin, a sustainable substitute for mammalian gelatin, frequently exhibits weaker gel strength and thermal stability, limiting its industrial uses. This study investigated an in vivo method to improve functional characteristics by supplementing Nile tilapia diets with Aronia extract. The control diet (A0) contained no Aronia extract, while the remaining four diets consisted of commercial pelleted feed enriched with 250 mg/kg (A250), 500 mg/kg (A500), 750 mg/kg (A750), and 1000 mg/kg (A1000) of Aronia extract.
View Article and Find Full Text PDFInt J Pharm
January 2025
Soft Matter Chemistry, Department of Chemistry, and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PB55 00014 Helsinki, Finland. Electronic address:
Drug loaded microfiber scaffolds have potential for sublingual drug delivery due to their fast dissolution time and tunable porosity. Such microfiber scaffolds can be prepared by melt electrowriting (MEW), wherein a polymer melt is electrostatically drawn out of a syringe onto a computer controlled moving collector. The fabrication of such scaffolds via MEW has previously been shown for a polymer with a glass transition temperature (T) just above room temperature, making handling challenging.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Non-Ferrous Metals, AGH University of Science and Technology, 30-059 Krakow, Poland.
The aim of this study was to compare the mechanical properties of carbon-fiber-reinforced polymer (CFRP) composites produced using three popular technologies. The tests were performed on composites produced from prepregs in an autoclave, the next variant is composites produced using the infusion method, and the third variant concerns composites produced using the vacuum-assisted hand lay-up method. For each variant, flat plates with dimensions of 1000 mm × 1000 mm were produced while maintaining similar material properties and fabric arrangement configuration.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Micron School of Material Science and Engineering, Boise State University, Boise, ID 83725, USA.
Carbon-fiber composites with thermoplastic matrices offer many processing and performance benefits in aerospace applications, but the long relaxation times of polymers make it difficult to predict how the structure of the matrix depends on its chemistry and how it was processed. Coarse-grained models of polymers can enable access to these long-time dynamics, but can have limited applicability outside the systems and state points that they are validated against. Here we develop and validate a minimal coarse-grained model of the aerospace thermoplastic poly(etherketoneketone) (PEKK).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
State Key Laboratory of Chemical Safety, Qingdao 266000, China.
Polyurea (PUR) has been widely used as a protective coating in recent years. In order to complete the understanding of the relationship between PUR microstructure and its energy absorption capabilities, the mechanical and dynamic performance of PURs containing various macrodiol structural units were compared using material characterization techniques and molecular dynamic simulation. The results showed that the PUR polycarbonate diols formed as energy absorbing materials showed high tensile strength, high toughness, and excellent loss factor distribution based on the comparison of stress-strain tensile curves, glass transition temperatures, phase images, and dynamic storage loss modulus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!