The improvement of xylanase production by Sclerotinia sclerotiorum S2 using a liquid fermentation culture was investigated. The optimized process was divided into three basic steps: (i) evaluating xylanase inducers using different agricultural residues such as wheat bran, oat bran, orange peel and barley bran at 1% final concentration, and also filter paper. Among these, wheat bran showed the maximum activity (2.5 U/ml) at 12 days post-inoculation; (ii) for optimization, we determined the optimal concentration of inducer, the effect of phosphate anion (K2HPO4/KH2PO4) and culture aeration using a rotary shaker at 100 and 180 rpm. The optimal conditions for these three factors were determined in an experimental panel using factorial data, in which a mathematical model (Minitab software) was fitted; (iii) The optimized culture medium containing a high level of wheat bran (3%) without KH2PO4-K2HPO4 and submitted to a high agitation (180 rpm/min) increased the xylanase production from 2.5 U/ml to 4 U/ml (1.6-fold).

Download full-text PDF

Source

Publication Analysis

Top Keywords

xylanase production
12
wheat bran
12
production sclerotinia
8
sclerotinia sclerotiorum
8
bran
5
optimization extracellular
4
xylanase
4
extracellular xylanase
4
sclerotiorum factorial
4
factorial design
4

Similar Publications

Engineering high-activity crosslinked enzyme aggregates via SpyCatcher/SpyTag-mediated self-assembly.

Int J Biol Macromol

January 2025

College of Forestry, Northwest A&F University, No.3 Taicheng Road, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling, Shaanxi 712100, China. Electronic address:

Crosslinked Enzyme Aggregates (CLEAs) are favored for their operational stability and recyclability. However, the traditional CLEAs preparation may distort the enzyme's active site and reduce activity. Therefore, we developed a universally applicable crosslinked SpyCatcher scaffold system designed for the facile preparation of CLEAs.

View Article and Find Full Text PDF

Clarification of Bio-Degumming Enzymes Based on a Visual Analysis of the Hemp Roving Structure.

Polymers (Basel)

December 2024

Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

Hemp fibers, recognized for their breathability, specific strength, and ultraviolet resistance, are widely utilized in textile manufacturing and composite materials. Bio-degumming is a promising alternative technology to traditional chemical degumming that can be used to produce hemp fibers due to its eco-friendly nature. However, its lower efficiency has hindered its widespread adoption.

View Article and Find Full Text PDF

The gut-liver axis and its interactions are essential for host physiology. Thus, we examined the jejunal microbiota, fermentation parameters, digestive enzymes, morphology, and liver metabolic profiles in different growth development lambs to investigate the liver-gut axis's role in their development. One hundred male Hu lambs of similar birth weight and age were raised under the same conditions until they reached 180 days of age.

View Article and Find Full Text PDF

The filamentous fungus (anamorph ) has been shown to be an efficient producer of secreted cellulases, used in biorefinery processes. Understanding the mechanisms of regulation of cellulase gene expression in the fungus is a current task in industrial biotechnology, since it allows for targeted changes in the composition of the complex secreted by the fungus. Expression of cellulase genes in fungi is regulated mainly at the level of transcription via pathway-specific transcription factors (TF), the majority of which belong to the Zn(II)2Cys6 family of zinc binuclear cluster proteins.

View Article and Find Full Text PDF

Preparation of Cello-Oligosaccharides by Precise-Controlled Enzymatic Depolymerization and Its Amphiphilic Functionalization for High-Oil Load Emulsification.

J Agric Food Chem

January 2025

Department of Biological and Chemical Engineering, Faculty of Technical Science, Aarhus University, Gustav Wieds Vej 10C, 8000Aarhus,Denmark.

Cello-oligosaccharides (COS) are gaining great attention for their prebiotic-like properties, e.g., boosting gut health by promoting beneficial bacteria and improving digestion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!