Asc and Ipaf Inflammasomes direct distinct pathways for caspase-1 activation in response to Legionella pneumophila.

Infect Immun

Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, 295 Congress Avenue, New Haven, CT 06536, USA.

Published: May 2009

Caspase-1 activation is a key feature of the innate immune response of macrophages elicited by pathogens and a variety of toxins. Here, we determined the requirement for different adapter proteins involved in regulating host processes mediated by caspase-1 after macrophage infection by Legionella pneumophila. The adapter protein Asc was found to be important for caspase-1 activation during L. pneumophila infection. Activation of caspase-1 through Asc did not require the flagellin-sensing pathway involving the host nucleotide-binding domain and leucine-rich repeat-containing protein Ipaf (NLRC4). Asc-dependent caspase-1 activation was inhibited by high extracellular potassium levels, whereas Ipaf-dependent activation was unaffected by potassium treatment. Activation of caspase-1 in macrophages occurred independently of Nalp3 and proteasome activity, suggesting that a previously uncharacterized mechanism for caspase-1 activation through Asc may be triggered by L. pneumophila. Rapid pore formation and pyroptosis induced by L. pneumophila required caspase-1, Ipaf, and bacterial flagellin but occurred independently of Asc. Equivalent levels of active interleukin-18 (IL-18) were detected in the lungs of mice infected with a flagellin-deficient strain of L. pneumophila and Asc-deficient mice infected with wild-type L. pneumophila. Active IL-18 was undetectable in the lungs of Asc-deficient mice infected with an L. pneumophila flagellin mutant, indicating independent roles for Ipaf and Asc in caspase-1-mediated processing and release of IL-18 in vivo. Ipaf-dependent activation of caspase-1 restricted bacterial replication in vivo, whereas Asc was dispensable for restriction of L. pneumophila replication in mice. Thus, L. pneumophila-mediated caspase-1 activation involves the coordinate activities of inflammasomes differentially regulated by Ipaf and Asc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2681768PMC
http://dx.doi.org/10.1128/IAI.01382-08DOI Listing

Publication Analysis

Top Keywords

caspase-1 activation
24
activation caspase-1
12
mice infected
12
caspase-1
11
activation
10
pneumophila
9
asc
8
legionella pneumophila
8
ipaf-dependent activation
8
occurred independently
8

Similar Publications

Genistein-3'-sodium sulfonate suppresses NLRP3-mediated cell pyroptosis after cerebral ischemia.

Metab Brain Dis

January 2025

Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou, 341000, China.

Cerebral ischemia-induced pyroptosis contributes to the dissemination of neuroinflammation, and Nod-like receptor protein-3 (NLRP3) inflammasome plays a key role in this process. Previous studies have indicated that Genistein-3'-sodiumsulfonate (GSS) can inhibit neuroinflammation caused by cerebral ischemia, exert cerebroprotective effects, but its specific mechanism has not been comprehensively understood. The aim of this study was to explore the effect of GSS on ischemic stroke-induced cell pyroptosis.

View Article and Find Full Text PDF

Targeting the NLRP3 inflammasome as a novel therapeutic target for osteoarthritis.

Inflammopharmacology

January 2025

Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.

Osteoarthritis, the most common arthritic condition, is an age-related progressive disease characterized by the loss of cartilage and synovial inflammation in the knees and hips. Development of pain, stiffness, and considerably restricted mobility of the joints are responsible for the production of matrix metalloproteinases and cytokines. Although several treatments are available for the management of this disease condition, they possess limitations at different levels.

View Article and Find Full Text PDF

Activating the pyroptosis pathway of tumor cells by photodynamic therapy (PDT) for immunogenic cell death (ICD) is considered a valid strategy in pursuit of antitumor immunotherapy, but it remains a huge challenge due to the lack of reliable design guidelines. Moreover, it is often overlooked that conventional PDT can exacerbate the development of tumor immunosuppressive microenvironment, which is apparently unfavorable to clinical immunotherapy. The endoplasmic reticulum's (ER) pivotal role in cellular homeostasis and its emerging link to pyroptosis have galvanized interest in ER-centric imaging and therapeutics.

View Article and Find Full Text PDF

Camptothecin (CPT), a chemotherapeutic agent, demonstrates significant potential in cancer therapy. However, as a drug, CPT molecule suffers from poor water solubility, limited bioavailability, and insufficient immune response. Herein, we construct CPT nanofibers (CNF) with a right-handed chiral property via supramolecular self-assembly, which significantly overcomes the solubility barriers associated with bioavailability and improves tumor immune prognosis.

View Article and Find Full Text PDF

Ulcerative colitis (UC), a persistent immune-mediated disorder lacking effective treatment, is distinguished by gut microbiota dysbiosis, abnormal activation of the NLRP3 inflammasome pathway, and apoptosis. Despite growing attention to these factors, understanding their significance in UC pathogenesis remains a challenge. The present study explores the potential therapeutic impact of (Bc) spores in a murine UC model induced by drinking 4 % (w/v) dextran sulfate sodium (DSS) in C57BL/6 mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!