Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Graduate medical students must demonstrate competency in clinical skills. Current tracking methods rely either on manual efforts or on simple electronic entry to record clinical experience. We evaluated automated methods to locate 10 institution-defined core clinical problems from three medical students' clinical notes (n=290). Each note was processed with section header identification algorithms and the KnowledgeMap concept identifier to locate Unified Medical Language System (UMLS) concepts. The best performing automated search strategies accurately classified documents containing primary discussions to the core clinical problems with area under receiver operator characteristic curve of 0.90-0.94. Recall and precision for UMLS concept identification was 0.91 and 0.92, respectively. Of the individual note section, concepts found within the chief complaint, history of present illness, and assessment and plan were the strongest predictors of relevance. This automated method of tracking can provide detailed, pertinent reports of clinical experience that does not require additional work from medical trainees. The coupling of section header identification and concept identification holds promise for other natural language processing tasks, such as clinical research or phenotype identification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490452 | PMC |
http://dx.doi.org/10.1016/j.jbi.2009.02.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!