Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis.

BMC Biotechnol

Institute of Technical Biochemistry, Universitaet Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.

Published: February 2009

Background: Laccases have huge potential for biotechnological applications due to their broad substrate spectrum and wide range of reactions they are able to catalyze. These include, for example, the formation and degradation of dimers, oligomers, polymers, and ring cleavage as well as oxidation of aromatic compounds. Potential applications of laccases include detoxification of industrial effluents, decolorization of textile dyes and the synthesis of natural products by, for instance, dimerization of phenolic acids. We have recently published a report on the cloning and characterization of a CotA Bacillus licheniformis laccase, an enzyme that catalyzes dimerization of phenolic acids. However, the broad application of this laccase is limited by its low expression level of 26 mg l-1 that was achieved in Escherichia coli. To counteract this shortcoming, random and site-directed mutagenesis have been combined in order to improve functional expression and activity of CotA.

Results: A CotA double mutant, K316N/D500G, was constructed by combining random and site-directed mutagenesis. It can be functionally expressed at an 11.4-fold higher level than the wild-type enzyme. In addition, it is able to convert ferulic acid much faster than the wild-type enzyme (21% vs. 14%) and is far more efficient in decolorizing a range of industrial dyes. The investigation of the effects of the mutations K316N and D500G showed that amino acid at position 316 had a major influence on enzyme activity and position 500 had a major influence on the expression of the laccase.

Conclusion: The constructed double mutant K316N/D500G of the Bacillus licheniformis CotA laccase is an appropriate candidate for biotechnological applications due to its high expression level and high activity in dimerization of phenolic acids and decolorization of industrial dyes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2653023PMC
http://dx.doi.org/10.1186/1472-6750-9-12DOI Listing

Publication Analysis

Top Keywords

bacillus licheniformis
12
random site-directed
12
site-directed mutagenesis
12
dimerization phenolic
12
phenolic acids
12
functional expression
8
licheniformis laccase
8
biotechnological applications
8
expression level
8
double mutant
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!