Functional characterization of transcripts expressed in early-stage Meloidogyne javanica-induced giant cells isolated by laser microdissection.

Mol Plant Pathol

Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre (SABC), School of Biological Sciences and Biotechnology, Murdoch University, Perth, WA6150, Australia.

Published: March 2009

The root-knot nematode Meloidogyne javanica induces giant cells and feeds from them during its development and reproduction. To study the cellular processes underlying the formation of giant cells, laser microdissection was used to isolate the contents of early-stage giant cells 4 and 7 days post-infection (dpi) from tomato, and cDNA libraries from both stages were generated with 87 [250 expressed sequence tag (EST) clones] and 54 (309 EST clones) individual transcripts identified, respectively. These transcripts have roles in metabolism, stress response, protein synthesis, cell division and morphogenesis, transport, signal transduction, protein modification and fate, and regulation of cellular processes. The expression of 25 selected transcripts was studied further by real-time quantitative reverse transcriptase-polymerase chain reaction. Among them, 13 showed continuous up-regulation in giant cells from 4 to 7 dpi. The expression of two transcripts was higher than in controls at 4 dpi and remained at the same level at 7 dpi; a further five transcripts were highly expressed only at 7 dpi. The Phi-1 protein gene, a cell cycle-related homologue in tobacco, was expressed 8.5 times more strongly in giant cells than in control cells at 4 dpi, but was reduced to 6.7 times at 7 dpi. Using in situ hybridization, the expression of the Phi-1 gene was preferentially localized in the cytoplasm of giant cells at 4 dpi, together with a pectinesterase U1 precursor gene. The identification of highly expressed transcripts in developing giant cells adds to the knowledge of the plant genes responsive to nematode infection, and may provide candidate genes for nematode control strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640526PMC
http://dx.doi.org/10.1111/j.1364-3703.2008.00526.xDOI Listing

Publication Analysis

Top Keywords

giant cells
32
cells dpi
12
cells
9
giant
8
laser microdissection
8
cellular processes
8
dpi
8
highly expressed
8
transcripts
7
expressed
5

Similar Publications

Introduction: Coronavirus disease 2019 (COVID-19) is characterized by fever, fatigue, dry cough, dyspnea, mild pneumonia and acute lung injury (ALI), which can lead to acute respiratory distress syndrome (ARDS), and SARS-CoV-2 can accelerate tumor progression. However, the molecular mechanism for the increased mortality in cancer patients infected with COVID-19 is unclear.

Methods: Colony formation and wound healing assays were performed on Huh-7 cells cocultured with syncytia.

View Article and Find Full Text PDF

Histoplasmosis is a rarely reported clinical disease of equids in North America and is historically attributed to Histoplasma capsulatum var. capsulatum. This report details a case of intestinal histoplasmosis with lymphadenitis in an American Mammoth Jackstock donkey from Mississippi.

View Article and Find Full Text PDF

Introduction: Leprosy is a chronic granulomatous disease caused by  and . Meanwhile, leprosy reactions are immunologically mediated episodes of acute or subacute inflammation that occur during the chronic course of the disease. Leprosy and leprosy reaction have a wide range of clinical manifestations, including those resembling psoriatic arthritis.

View Article and Find Full Text PDF

Objectives: GCA is a granulomatous vasculitis affecting large vessels, leading to intimal occlusion accompanied by the accumulation of myofibroblasts. Histopathologically, GCA is characterized by destruction of the tunica media and hypertrophy of the intima with invasion of activated CD4+ T cells, macrophages and multinucleated giant cells (MNGCs). Despite these well-defined histopathological features, the molecular pathology of GCA has largely remained elusive.

View Article and Find Full Text PDF

Once believed to be the culprits of epileptogenic activity, the functional properties of balloon/giant cells (BC/GC), commonly found in some malformations of cortical development including focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC), are beginning to be unraveled. These abnormal cells emerge during early brain development as a result of a hyperactive mTOR pathway and may express both neuronal and glial markers. A paradigm shift occurred when our group demonstrated that BC/GC in pediatric cases of FCDIIb and TSC are unable to generate action potentials and lack synaptic inputs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!