By combining a large pi-conjugated bidentate ligand L: 3,6-dipyrazole-N-ethylcarbazole with HgI(2), an extraordinary supramolecular coordination polymer, [Hg(4)L(2)I(8)](infinity), has been prepared. The crystal structures of the ligand and its coordination polymer were determined by X-ray crystallography, which shows three varied coordination modes especially the rare asymmetric quadruply bridged trinuclear moieties in [Hg(4)L(2)I(8)](infinity). Density functional theory (DFT) calculations (ADF) performed on model dimers show the roles of covalent and noncovalent interactions in establishing the three-dimensional architecture.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp810565wDOI Listing

Publication Analysis

Top Keywords

dft calculations
8
covalent noncovalent
8
noncovalent interactions
8
coordination polymer
8
unique coordination
4
coordination patterns
4
patterns dft
4
calculations determine
4
determine formation
4
formation 3-d
4

Similar Publications

Magnetically Induced Current-Density Susceptibility of Circum[]coronenes.

J Phys Chem A

January 2025

Department of Chemistry, Faculty of Science, University of Helsinki, P.O. Box 55, A. I. Virtasen aukio 1, Helsinki FIN-00014, Finland.

We have calculated the magnetically induced current density (MICD) susceptibility at the all-electron density functional theory level for a series of coronoid molecules of increasing size and compared the MICD susceptibilities with those calculated using the pseudo-π (PP) model. The molecules sustain global diatropic magnetically induced ring currents (MIRCs), whereas paratropic MICD vortices mainly appear inside the benzene rings. The computationally cheaper PP calculations were also employed on circum[]coronene molecules showing that the MICD pattern continues to alternate for odd and even when increasing the size of the molecule.

View Article and Find Full Text PDF

The position and configuration of the C═C bond have a significant impact on the spatial conformation of unsaturated lipids, which subsequently affects their biological functions. Double bond isomerization of lipids is an important mechanism of bacterial stress response, but its in-depth mechanistic study still lacks effective analytical tools. Here, we developed a visible-light-activated dual-pathway reaction system that enables simultaneous [2 + 2] cycloaddition and catalytic - isomerization of the C═C bond of unsaturated lipids via directly excited anthraquinone radicals.

View Article and Find Full Text PDF

CO2-driven Oxygen Vacancy Diffusion and Healing on TiO2(110) at Ambient Pressure.

Angew Chem Int Ed Engl

January 2025

KAIST - Korea Advanced Institute of Science and Technology, Department of Chemistry, Center for Nanomaterials and Chemical Reaction, IBS, 373-1, Guseong Dong, Yuseong Gu, 305-701, Daejeon, KOREA, REPUBLIC OF.

Understanding how TiO2 interacts with CO2 at the molecular level is crucial in the CO2 reduction toward value-added energy sources. Here, we report in-situ observations of the CO2 activation process on the reduced TiO2(110) surface at room temperature using ambient pressure scanning tunneling microscopy. We found that oxygen vacancies (Vo) diffuse dynamically along the bridging oxygen (Obr) rows of the TiO2(110) surface under ambient CO2(g) environments.

View Article and Find Full Text PDF

Aromatic π-complexes play a significant role in various chemical and biological systems, significantly influencing their physico-chemical and spectroscopic properties. The identification of new compounds capable of π-complex formation is therefore of great interest. The paper investigates the fluorescent properties of 1,5-diisocyanonaphthalene (1,5-DIN) in different aromatic solvents, demonstrating its potential for distinguishing between aromatics based on emission spectra.

View Article and Find Full Text PDF

A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!