The composition of a complex equilibrium mixture formed upon dissolution of (Se(6)I(2))[AsF(6)](2).2SO(2) in SO(2)(l) was studied by (77)Se NMR spectroscopy at -70 degrees C with both natural-abundance and enriched (77)Se-isotope samples (enrichment 92%). Both the natural-abundance and enriched NMR spectra showed the presence of previously known cations 1,4-Se(6)I(2)(2+), SeI(3)(+), 1,1,4,4-Se(4)I(4)(2+), Se(10)(2+), Se(8)(2+), and Se(4)(2+). The structure and bonding in 1,4-Se(6)I(2)(2+) and 1,1,4,4-Se(4)I(4)(2+) were explored using DFT calculations. It was shown that the observed Se-Se bond alternation and presence of thermodynamically stable 4ppi-4ppi Se-Se and 4ppi-5ppi Se-I bonds arise from positive charge delocalization from the formally positively charged tricoordinate Se(+). The (77)Se chemical shifts for cations were calculated using the relativistic zeroth-order regular approximation (ZORA). In addition, calculations adding a small number of explicit solvent molecules and an implicit conductor-like screening model were conducted to include the effect that solvent has on the chemical shifts. The calculations yielded reasonable agreement with experimental chemical shifts, and inclusion of solvent effects was shown to improve the agreement over vacuum values. The (77)Se NMR spectrum of the equilibrium solution showed 22 additional resonances. These were assigned on the basis of (77)Se-(77)Se correlation spectroscopy, selective irradiation experiments, and spectral simulation. By combining this information with the trends in the chemical shifts, with iodine, selenium, and charge balances, as well as with ZORA chemical shift predictions, these resonances were assigned to acyclic 1,1,2-Se(2)I(3)(+), 1,1,6,6-Se(6)I(4)(2+), and 1,1,6-Se(6)I(3)(+), as well as to cyclic Se(7)I(+) and (4-Se(7)I)(2)I(3+). A preliminary natural-abundance (77)Se NMR study of the soluble products of the reaction of (Se(4))[AsF(6)](2) and bromine in liquid SO(2) included resonances attributable to 1,1,4,4-Se(4)Br(4)(2+)(.) These assignments are supported by the agreement of the observed and calculated (77)Se chemical shifts. Resonances attributable to cyclic Se(7)Br(+) were also observed. The thermal stability of (Se(6)I(2))[AsF(6)](2).2SO(2)(s) was consistent with estimates of thermodynamic values obtained using volume-based thermodynamics (VBT) and the first application of the thermodynamic solvate difference rule for nonaqueous solvates. (Se(6)I(2))[AsF(6)](2).2SO(2)(s) is the first example of a SO(2) solvate for which the nonsolvated parent salt, (Se(6)I(2))[AsF(6)](2)(s), is not thermodynamically stable, disproportionating to Se(4)I(4)(AsF(6))(2)(s) and Se(8)(AsF(6))(2)(s) (DeltaG degrees for the disproportion reaction is estimated to be -17 +/- 15 kJ mol(-1) at 298 K from VBT theory).

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic8015673DOI Listing

Publication Analysis

Top Keywords

chemical shifts
20
77se nmr
16
liquid so2
8
natural-abundance enriched
8
thermodynamically stable
8
77se chemical
8
resonances assigned
8
resonances attributable
8
77se
6
chemical
6

Similar Publications

Multifunctional applications enabled by tunable multi-emission and ultra-broadband VIS-NIR luminescence energy transfer in Sn/Mn-doped lead-free Zn-based metal halides.

Mater Horiz

January 2025

School of Physical Science and Technology, School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

Metal halides are widely applied in solid-state lighting (SSL), optoelectronic devices, information encryption, and near-infrared (NIR) detection due to their superior photoelectric properties and tunable emission. However, single-component phosphors that can be efficiently excited by light-emitting diode (LED) chips and cover both the visible (VIS) and NIR emission regions are still very rare. To address this issue, (TPA)ZnBr:Sn/Mn (TPA = [(CHCHCH)N]) phosphors were synthesized by using the solvent evaporation method.

View Article and Find Full Text PDF

Energy Aggregation for Illuminating Upconversion Multicolor Emission Based on Ho Ions.

ACS Appl Mater Interfaces

January 2025

School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.

Lanthanide-doped upconversion luminescent nanoparticles (UCNPs) have garnered extensive attention due to their notable anti-Stokes shifts and superior photostability. Notably, Ho-based UCNPs present a complex energy level configuration, which poses challenges in augmenting their luminescence efficiency. Herein, a rational design strategy was used to enhance the upconversion luminescence intensity of Ho ions by improving the photon absorption ability and energy utilization efficiency.

View Article and Find Full Text PDF

A novel series of azo dyes was successfully synthesized by combining amino benzoic acid and amino phenol on the same molecular framework azo linkage. The structural elucidation of these dyes was carried out using various spectroscopic techniques, including UV-vis, FT-IR, NMR spectroscopy, and HRMS. Surprisingly, the aromatic proton in some dyes exhibited exchangeability in DO, prompting a 2D NMR analysis to confirm this phenomenon.

View Article and Find Full Text PDF

Cancer is caused by complex interactions between genetic, environmental, and lifestyle factors, making prevention strategies, including exercise, a promising avenue for intervention. Physical activity is associated with reduced cancer incidence and progression and systemic anti-cancer effects, including improved tumor suppression and prolonged survival in preclinical models. Exercise impacts the body's nutrient balance and stimulates the release of several exercise-induced factors into circulation.

View Article and Find Full Text PDF

For the first time asymmetric and symmetric carboxytriazoleimidazolium derivatives with different structures were synthesized. The critical micellization concentration (CMC) value was estimated using a pyrene fluorescent probe and the solubility of Orange OT. The complexation ability of carboxytriazoleimidazolium derivatives toward bovine serum albumin (BSA) has been investigated by various physico-chemical methods: fluorescence spectroscopy, electrophoretic light scattering and circular dichroism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!