In recent years, numerous Gd(3+)-based contrast agents have been developed to enable target-specific MR imaging of in vivo processes at the molecular level. The combination of powerful contrast agents and amplification strategies, aimed at increasing the contrast agent dose at the target site, is an often-used strategy to improve the sensitivity of biomarker detection. One such amplification mechanism is to target a disease-specific cell membrane receptor that can undergo multiple rounds of internalization following ligand binding and thus shuttle a sizeable amount of contrast agent into the target cell. An example of such a membrane receptor is the alpha(nu)beta(3) integrin. The goal of this study was to investigate the consequences of this amplification approach for the T(1)- and T(2)-shortening efficacy of a paramagnetic contrast agent. Cultured endothelial cells were incubated with paramagnetic liposomes that were conjugated with a cyclic RGD-peptide to enable internalization by means of the alpha(nu)beta(3) integrin receptor. Non-targeted liposomes served as a control. This study showed that alpha(nu)beta(3) targeting dramatically increased the uptake of paramagnetic liposomes. This targeting strategy, however, strongly influenced both the longitudinal and transverse relaxivity of the internalized paramagnetic liposomes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.21910DOI Listing

Publication Analysis

Top Keywords

paramagnetic liposomes
16
contrast agent
12
internalized paramagnetic
8
contrast agents
8
membrane receptor
8
alphanubeta3 integrin
8
paramagnetic
5
liposomes
5
contrast
5
cellular compartmentalization
4

Similar Publications

This article investigates the influence of dopant molecules on the structural and dynamic properties of lipid bilayers in liposomes, with a focus on the effects of dopant concentration, size, and introduced electric charge. Experimental studies were performed using electron paramagnetic resonance (EPR) spectroscopy with spin probes, complemented by Monte Carlo simulations. Liposomes, formed via lecithin sonication, were doped with compounds of varying concentrations and analyzed using EPR spectroscopy to assess changes in membrane rigidity.

View Article and Find Full Text PDF

Manganese-Loaded Liposomes: An In Vitro Study for Possible Diagnostic Application.

Molecules

July 2024

Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, 44121 Ferrara, Italy.

The present study investigates the possible use of manganese (Mn)-based liposomal formulations for diagnostic applications in imaging techniques such as magnetic resonance imaging (MRI), with the aim of overcoming the toxicity limitations associated with the use of free Mn. Specifically, anionic liposomes carrying two model Mn(II)-based compounds, MnCl (MC) and Mn(HMTA) (MH), were prepared and characterised in terms of morphology, size, loading capacity, and in vitro activity. Homogeneous dispersions characterised mainly by unilamellar vesicles were obtained; furthermore, no differences in size and morphology were detected between unloaded and Mn-loaded vesicles.

View Article and Find Full Text PDF

Macrocyclic Co(II) complexes with appended amide-glycinate groups were prepared to develop paramagnetic Co(II) chemical exchange saturation transfer (CEST) agents of reduced overall charge. Complexes with reduced charge and lowered osmolarity are important for their loading into liposomes and to provide complexes that are highly water soluble and well tolerated in animals. Co(L1) has two non-coordinating benzyl groups and two amide-glycinate pendants, whereas Co(L2) has two unsubstituted amide pendants and two amide-glycinate pendants on cyclam (1,4,8,11-tetraazacyclododecane).

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) are a leading cause of death globally, demanding innovative therapeutic strategies. Nanoformulations, including nanoparticles, address challenges in drug delivery, stem cell therapy, imaging, and gene delivery. Nanoparticles enhance drug solubility, bioavailability, and targeted delivery, with gas microbubbles, liposomal preparations, and paramagnetic nanoparticles showing potential in treating atherosclerosis and reducing systemic side effects.

View Article and Find Full Text PDF

Cutaneous leishmaniasis (CL) is a neglected tropical disease. The treatment is restricted to drugs, such as meglumine antimoniate and amphotericin B, that exhibit toxic effects, high cost, long-term treatment, and limited efficacy. The development of new alternative therapies, including the identification of effective drugs for the topical and oral treatment of CL, is of great interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!