A multiobjective genetic algorithm is designed to optimize a computer-aided detection (CAD) system for identifying colonic polyps. Colonic polyps appear as elliptical protrusions on the inner surface of the colon. Curvature-based features for colonic polyp detection have proved to be successful in several CT colonography (CTC) CAD systems. Our CTC CAD program uses a sequential classifier to form initial polyp detections on the colon surface. The classifier utilizes a set of thresholds on curvature-based features to cluster suspicious colon surface regions into polyp candidates. The thresholds were previously chosen experimentally by using feature histograms. The chosen thresholds were effective for detecting polyps sized 10 mm or larger in diameter. However, many medium-sized polyps, 6-9 mm in diameter, were missed in the initial detection procedure. In this paper, the task of finding optimal thresholds as a multiobjective optimization problem was formulated, and a genetic algorithm to solve it was utilized by evolving the Pareto front of the Pareto optimal set. The new CTC CAD system was tested on 792 patients. The sensitivities of the optimized system improved significantly, from 61.68% to 74.71% with an increase of 13.03% (95% CI [6.57%, 19.5%], p = 7.78 x 10(-5)) for the size category of 6-9 mm polyps, from 65.02% to 77.4% with an increase of 12.38% (95% CI [6.23%, 18.53%], p = 7.95 x 10(-5)) for polyps 6 mm or larger, and from 82.2% to 90.58% with an increase of 8.38% (95% CI [0.75%, 16%], p = 0.03) for polyps 8 mm or larger at comparable false positive rates. The sensitivities of the optimized system are nearly equivalent to those of expert radiologists.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2654220PMC
http://dx.doi.org/10.1118/1.3040177DOI Listing

Publication Analysis

Top Keywords

ctc cad
12
colonic polyp
8
polyp detection
8
evolving pareto
8
genetic algorithm
8
cad system
8
colonic polyps
8
curvature-based features
8
colon surface
8
sensitivities optimized
8

Similar Publications

Article Synopsis
  • An error grid is a tool that helps compare glucose levels measured by devices to see if they are correct and to identify any risks.
  • Experts created a new error grid called the DTS Error Grid that works for both blood glucose monitors (BGMs) and continuous glucose monitors (CGMs), organizing accuracy into five risk zones.
  • The results showed that the DTS Error Grid provides a clearer picture of how accurate these devices are and includes a separate matrix to evaluate how well CGMs track glucose trends over time.
View Article and Find Full Text PDF

Background: Although DNA repair mechanisms function to maintain genomic integrity, in cancer cells these mechanisms may negatively affect treatment efficiency. The strategy of targeting cancer cells via inhibiting DNA damage repair has been successfully used in breast and ovarian cancer using PARP inhibitors. Unfortunately, such strategies have not yet yielded results in liver cancer.

View Article and Find Full Text PDF

Designing a Hybrid Method of Artificial Neural Network and Particle Swarm Optimization to Diagnosis Polyps from Colorectal CT Images.

Int J Prev Med

January 2024

Professor of Health Information Management and Medical Informatics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Background: Since colorectal cancer is one of the most important types of cancer in the world that often leads to death, computer-aided diagnostic (CAD) systems are a promising solution for early diagnosis of this disease with fewer side effects than conventional colonoscopy. Therefore, the aim of this research is to design a CAD system for processing colorectal Computerized Tomography (CT) images using a combination of an artificial neural network and a particle swarm optimizer.

Method: First, the data set of the research was created from the colorectal CT images of the patients of Loghman-e Hakim Hospitals in Tehran and Al-Zahra Hospitals in Isfahan who underwent colorectal CT imaging and had conventional colonoscopy done within a maximum period of one month after that.

View Article and Find Full Text PDF

Objective: The purpose of this in vitro study was to evaluate the effect of potassium aluminum sulfate (alum) application on the stainability and translucency of computer-aided design and computer-aided manufacturing (CAD-CAM) materials after coffee thermocycling (CTC).

Materials And Methods: Disk-shaped specimens (Ø10 × 1 mm; N = 200) were fabricated by using additively (Crowntec [CT] and Varseo Smile Crown Plus [VS]) and subtractively manufactured (Brilliant Crios [RCR], CEREC Block [FC], and Vita Enamic [VE]) CAD-CAM materials and polished. All specimens were randomly divided into two groups as alum applied and control (n = 10).

View Article and Find Full Text PDF

Objective: To evaluate the effect of coffee thermocycling (CTC) on the surface roughness (R ) and stainability of denture base materials with different chemical compositions fabricated by using additive and subtractive manufacturing.

Materials And Methods: Disk-shaped specimens were additively (FREEPRINT denture, AM) or subtractively (G-CAM, GSM and M-PM, SM) fabricated from three pink denture base materials in different chemical compositions (n = 10). R was measured before and after polishing, while color coordinates were measured after polishing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!