We previously showed that chronic psychostimulant exposure induces the transcription factor DeltaFosB in gamma-aminobutyric acid (GABA)ergic neurons of the caudal tier of the ventral tegmental area (VTA). This subregion was defined as the tail of the VTA (tVTA). In the present study, we showed that tVTA can also be visualized by analyzing FosB/DeltaFosB response following acute cocaine injection. This induction occurs in GABAergic neurons, as identified by glutamic acid decarboxylase (GAD) expression. To characterize tVTA further, we mapped its inputs by using the retrograde tracers Fluoro-Gold or cholera toxin B subunit. Retrogradely labeled neurons were observed in the medial prefrontal cortex, the lateral septum, the ventral pallidum, the bed nucleus of the stria terminalis, the substantia innominata, the medial and lateral preoptic areas, the lateral and dorsal hypothalamic areas, the lateral habenula, the intermediate layers of the superior colliculus, the dorsal raphe, the periaqueductal gray, and the mesencephalic and pontine reticular formation. Projections from the prefrontal cortex, the hypothalamus, and the lateral habenula to the tVTA were also shown by using the anterograde tracer biotinylated dextran amine (BDA). We showed that the central nucleus of the amygdala innervates the anterior extent of the VTA but not the tVTA. Moreover, the tVTA mainly receives non-aminergic inputs from the dorsal raphe and the locus coeruleus. Although the tVTA has a low density of dopaminergic neurons, its afferents are mostly similar to those targeting the rest of the VTA. This suggests that the tVTA can be considered as a VTA subregion despite its caudal location.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.21983 | DOI Listing |
The ventral tegmental area (VTA), a midbrain region associated with motivated behaviors, consists predominantly of dopaminergic (DA) neurons and GABAergic (GABA) neurons. Previous work has suggested that VTA GABA neurons provide a reward prediction, which is used in computing a reward prediction error. In this study, using in vivo electrophysiology and continuous quantification of force exertion in head-fixed mice, we discovered distinct populations of VTA GABA neurons that exhibited precise force tuning independently of learning, reward prediction, and outcome valence.
View Article and Find Full Text PDFDistinct excitatory synaptic inputs to the locus coeruleus (LC) modulate behavioral flexibility. Here we identify a novel monosynaptic glutamatergic input to the LC from the ventral tegmental area (VTA). We show robust VTA axonal projections provide direct glutamatergic transmission to LC.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430048, China; Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
Prog Neuropsychopharmacol Biol Psychiatry
December 2024
Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271016, China. Electronic address:
Background And Purpose: Autism spectrum disorder (ASD) is clinically heterogeneous, and resent neuroimaging studies have shown the presence of brain structural heterogeneity in ASD. However, there is currently a lack of evidence for systemic level brain structural heterogeneity. This study aimed to reveal the heterogeneity of brain structural changes at the systemic level in ASD patients through individual differential structural covariance network (IDSCN) analysis.
View Article and Find Full Text PDFMol Brain
December 2024
Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
Rapid adaptation to novel environments is crucial for survival, and this ability is impaired in many neuropsychiatric disorders. Understanding neural adaptation to novelty exposure therefore has therapeutic implications. Here, I found that novelty induces time-dependent theta (4-12Hz) oscillatory dynamics in brain circuits including the medial prefrontal cortex (mPFC), ventral hippocampus (vHPC), and ventral tegmental area (VTA), but not dorsal hippocampus (dHPC), as mice adapt to a novel environment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!