Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have developed a new 3D porous and biostable collagen scaffold for implantable glucose sensors. The scaffolds were fabricated around the sensors and crosslinked using nordihydroguaiaretic acid (NDGA) or glutaraldehyde (GA) to enhance physical and biological stability. The effect of the scaffolds on sensor function and biocompatibility was examined during long-term (>or=28 days) in vitro and in vivo experiments and compared with control bare sensors. To evaluate the effect of the sensor length on micromotion and sensor function, we also fabricated short and long sensors. 3D porous scaffold application around glucose sensors did not significantly affect the long-term in vitro sensitivity of the sensors. The scaffolds, crosslinked by either NDGA or GA, remained stable around the sensors during the 4 week in vitro study. In the long-term in vivo study, the sensitivity of the short sensors was higher than the sensitivity of long sensors presumably because of less micromotion in the subcutis of the rats. The sensors with NDGA-crosslinked scaffolds had a higher sensitivity than the sensors with GA-crosslinked scaffolds. Histological examination showed that NDGA-crosslinked scaffolds retained their physical structure with reduced inflammation when compared with the GA-crosslinked scaffolds. Therefore, the application of NDGA-crosslinked collagen scaffolds might be a good method for enhancing the function and lifetime of implantable biosensors by minimizing the in vivo foreign body response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.32400 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!