A group of novel 4,5-dihydro-3-methylisoxazolyl derivatives, structurally related to epiboxidine (=(1R,4S,6S)-6-(3-methylisoxazol-5-yl)-7-azabicyclo[2.2.1]heptane), was prepared via 1,3-dipolar cycloaddition of acetonitrile oxide to different olefins. Target compounds 1a and 1b, 2a and 2b, 3, 4, and 5 were tested for affinity at neuronal nicotinic heteromeric (alpha4beta2) and homomeric (alpha7) acetylcholine receptors. Notably, diastereoisomers 1a and 1b were characterized by a massive drop of the affinity at the alpha4beta2 subtypes (K(i) values spanning the range 4.3-126 microM), when compared with that of epiboxidine (K(i)=0.6 nM). Therefore, the replacement of the 3-methylisoxazole ring of epiboxidine with the 4,5-dihydro-3-methylisoxazole nucleus is detrimental for the affinity at alpha4beta2 receptors. A comparable lack of affinity/selectivity for the two nAChR subtypes under study was evidenced for the remaining epiboxidine-related dihydroisoxazole derivatives 2a and 2b, and 3-5. Diastereoisomers 1a and 1b, and spirocyclic derivative 3 were docked into molecular models of the receptor subtypes under study, and their binding mode was compared with that of reference ligands endowed with high binding affinity.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.200800077DOI Listing

Publication Analysis

Top Keywords

binding affinity
8
affinity neuronal
8
neuronal nicotinic
8
acetylcholine receptors
8
affinity alpha4beta2
8
subtypes study
8
affinity
5
analogues epiboxidine
4
epiboxidine incorporating
4
incorporating 45-dihydroisoxazole
4

Similar Publications

Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119.

View Article and Find Full Text PDF

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

Site-selective photo-crosslinking for the characterisation of transient ubiquitin-like protein-protein interactions.

PLoS One

January 2025

Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.

Non-covalent protein-protein interactions are one of the most fundamental building blocks in cellular signalling pathways. Despite this, they have been historically hard to identify using conventional methods due to their often weak and transient nature. Using genetic code expansion and incorporation of commercially available unnatural amino acids, we have developed a highly accessible method whereby interactions between biotinylated ubiquitin-like protein (UBL) probes and their binding partners can be stabilised using ultraviolet (UV) light-induced crosslinks.

View Article and Find Full Text PDF

A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!