Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Non-adapting superior cervical ganglion (SCG) neurones with a clustering activity and sub-threshold membrane potential oscillations were occasionally recorded, suggesting the presence of a persistent sodium current (I(NaP)). The perforated-patch technique was used to establish its properties and physiological role. Voltage-clamp experiments demonstrated that all SCG cells have a TTX-sensitive I(NaP) activating at about -60 mV and with half-maximal activation at about -40 mV. The mean maximum I(NaP) amplitude was around -40 pA at -20 mV. Similar results were achieved when voltage steps or voltage ramps were used to construct the current-voltage relationships, and the general I(NaP) properties were comparable in mouse and rat SCG neurons. I(NaP) was inhibited by riluzole and valproate with an IC(50) of 2.7 and 3.8 microM, respectively, while both drugs inhibited the transient sodium current (I (NaT)) with a corresponding IC(50) of 34 and 150 microM. It is worth noting that 30 microM valproate inhibited the I(NaP) by 70% without affecting the I(NaT). In current clamp, valproate (30 microM) hyperpolarised resting SCG membranes by about 2 mV and increased the injected current necessary to evoke an action potential by about 20 pA. Together, these results demonstrate for the first time that a persistent sodium current exists in the membrane of SCG sympathetic neurones which could allow them to oscillate in the sub-threshold range. This current also contributes to the resting membrane potential and increases cellular excitability, so that it is likely to play an important role in neuronal behaviour.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00424-009-0648-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!