Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1036
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3154
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The prime function of classically activated macrophages (activated by Th1-type signals, such as IFN-gamma) is microbial destruction. Alternatively activated macrophages (activated by Th2 cytokines, such as IL-4 and IL-13) play important roles in allergy and responses to helminth infection. We utilize a murine model of filarial infection, in which adult nematodes are surgically implanted into the peritoneal cavity of mice, as an in vivo source of alternatively activated macrophages. At 3 wk postinfection, the peritoneal exudate cell population is dominated by macrophages, termed nematode-elicited macrophages (NeMphi), that display IL-4-dependent features such as the expression of arginase 1, RELM-alpha (resistin-like molecule alpha), and Ym1. Since increasing evidence suggests that macrophages show functional adaptivity, the response of NeMphi to proinflammatory Th1-activating signals was investigated to determine whether a switch between alternative and classical activation could occur in macrophages differentiated in an in vivo infection setting. Despite the long-term exposure to Th2 cytokines and antiinflammatory signals in vivo, we found that NeMphi were not terminally differentiated but could develop a more classically activated phenotype in response to LPS and IFN-gamma. This was reflected by a switch in the enzymatic pathway for arginine metabolism from arginase to inducible NO synthase and the reduced expression of RELM-alpha and Ym1. Furthermore, this enabled NeMphi to become antimicrobial, as LPS/IFN-gamma-treated NeMphi produced NO that mediated killing of Leishmania mexicana. However, the adaptation to antimicrobial function did not extend to key regulatory pathways, such as IL-12 production, which remained unaltered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.0803463 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!